Ten years of forecast use

IEA Wind Task 36 Forecasting: Workshop Barcelona directions

Sophie GUIGNARD
9 juin 2016
Maïa Eolis, branch of ENGIE

561 MW of building permits and 246 MW currently under operation in France

1st wind farm commissioned in 2005

80 employees, most of them are engineers

230 millions euros of capital

Maïa Eolis headquarters are in Lille, We have other office in Lyon and Nantes and 3 maintenance centers based near the farms at Estrées Deniécourt (80), Rumont (55) and Méry sur Seine (10).
Our skills

Single point of contact, we manage every step of a wind farm project

Development
From site research to administrative approval

Construction
Building phase, turbines reception and end of warranty checkings

Operation
Monitoring and remote management of wind farms
Our skills

Maintenance
Predictive, preventive and curative maintenance, including blades and 20kV grid

Expertise
Technical support and R&D
Wind / Acoustic / TV / GIS / SCADA-Automation / Computer science / Mechanical and Electrical engineering
Our forecasting experience

2007
- Benchmark to find a provider
 About 20 companies was contacted and 10 were tested

2008
- Establishing a supply forecasts with a first provider
 - 10 wind farm.
 - 4 times daily as an archive on an htp server containing one csv file for each wind farm
 - Forecast each 15 min
 - Deadline = 6 days
 - NMAE between 6 and 26 % with an average on 12% for the first 48 hours

2012
- Development of internal models
 Setting up a run WRF in all our wind farm.
 - Forecast each 10 min
 - Deadline = 8 days
 - NMAE between 4 and 45 % with an average on 16% for the first 48 hours
New benchmark provider and Change
- 10 zones → 22 wind farm.
- 1 time daily as an archive on csv file for each zone by mail
- Forecast each hour
- Deadline = 10 days
- NMAE between 6 and 30 % with an average on 12% for the first 48 hours

What kind of use :
R & D project for grid integration
Maintenance
Managing budgets
Our feedback

- Maintain an efficient model can be costly

- Some wind farm are hard to predict

<table>
<thead>
<tr>
<th></th>
<th>Provider1</th>
<th>Provider2</th>
<th>Provider3</th>
</tr>
</thead>
<tbody>
<tr>
<td>WF1</td>
<td>9,16%</td>
<td>11,33%</td>
<td>11,04%</td>
</tr>
<tr>
<td>WF2</td>
<td>6,64%</td>
<td>7,95%</td>
<td>8,85%</td>
</tr>
</tbody>
</table>

- An interface is important for our use
Exemple of a bad forecast

Friday the 27th May: forecast for all turbines

It’s May → Not a lot of wind so not a lot of production
Exemple of a bad forecast

Friday the 27th may : forecast of wind for turbines of the North

For monday 30th May : expected wind at 6m/s → Blades repairs are allowed.
Exemple of a bad forecast

Monday the 30th May: forecast for all turbines

A forecast within 1GWh (858 MWh) become a forecast almost 3GWh (2941 MWh) !!!
Exemple of a bad forecast

Monday the 30th May: forecast of wind for turbines of the North Peaks at 10m/s (against 6m/s) ?!!! Blades repairs are impossible

Peaks at 10m/s (against 6m/s) ?!!! Blades repairs are impossible
What's happen?

Unclear at know

Some assumptions:
- Gusty winds?
- Unexpected phenomenon?
Other types of error

time shift
Our wishes

A good interface for our special use

Ever more precise forecast

At least: better indicators of uncertainty
Future perspectives

Development of advances forecasting models
- Power production forecasts currently in use for scheduling maintenance works in particular
- Future use: Production/consumption forecasting for optimized integration in network: overload forecasting

Maia Eolis is involved in research project « FOREWER »
- In association with RTE, EDF, Research Labs and universities
- Development of advanced short term & seasonal forecasting models for wind resource/power output
- Focus on risks
- Synergy between statistical and probabilistic forecasting methods
Thank you!

Questions?
sguignard@maiaeolis.fr