FORECASTING IN A FRENCH CONTEXT METEOROLOGICAL FEEDBACK

09. June 2016 – IEA Wind Task 36 Forecasting : Workshop on Experiences and Research Gaps – Barcelona

Stanislas Siblot and Aurélien Bendaoud

L'énergie au cœur des territoires

- **1** BACKGROUND INFORMATION
- 2 FORECASTING WITH APOGEES ®
- 3 METEOROLOGICAL FEEDBACK
- 4 CONCLUSIONS

1. BACKGROUND INFORMATION CNR IN EUROPEAN ELECTRICITY MARKETS

COMPAGNIE NATIONALE DU RHÔNE ASSETS IN FRANCE

 \mathbf{C}

IEA Wind Task 36 Forecasting : Workshop on Experiences and Research Gaps

COMPAGNIE NATIONALE DU RHÔNE METEOROLOGICAL EXPERIENCE

Operational hydro-meteorological forecasting system on the Rhône river basin in relation to the TSO and the market

> Operational small hydro, wind and solar power production forecasting system :

- ✓ Maintenance optimisation
- Energy portfolio management in deregulated markets
- ✓ TSO demands
- ✓ Smart Grid challenges

2. FORECASTING WITH APOGEES ®

CNR KNOW-HOW APPLIED TO WIND AND SOLAR POWER FORECASTING

APOGEES ® OPERATIONAL USE

Wind, solar and small hydro power forecasting

- In-house development
- Spatial scale : from unique-park scale to all-CNR-park scale
- Temporal scale :
 - Timestep : hourly, with intra-hour interpolations
 - Horizon : mainly up to +4 days, but up to +15 days for 2 wind parks
- Deterministic forecasts and associated uncertainties
- Room for meteorological expertise

Current operational use

- CNR farms (9 wind, 2 PV and 2 small hydro)
- 2 ENGIE Romania wind farms (48 and 50 MW)
- 2 GP Joule PV farms (40 and 34 MWp)
- Small Hydro from private owners
- Ongoing benchmarks

APOGEES ® METHODOLOGY AND RESULTS

Input data

- AROME and ARPEGE (Météo-France), IFS (ECMWF), GFS (NOAA) and COSMO (Météo Suisse) -> multi-model approach
- On-site observed SCADA data
- Farm availability (maintenance operations)

Modelisation

- Stats : data mining (NN) and basic regressions (GLM + non linear regressions), ARIMA for short lead-time
- 2-phases (wind + prod) or 1-phase (prod only) modelisation approaches
- Physical : for PV modeling only
- MOS for uncertainty forecasting
- Results Trial for 1 wind farm in Romania (45 MW) during 2 months
 - Forecast Quality (day-ahead, error relative to production)

APOGEES ® USER INTERFACE

09/06/2016 - 9

IEA Wind Task 36 Forecasting : Workshop on Experiences and Research Gaps

APOGEES ® USER INTERFACE

Availabilities data (maintenance operations) as input

APOGEES ® WEB-INTERFACE

Online web-interface displaying production forecasts (secured connexion)

3. METEOROLOGICAL FEEDBACK CASE STUDY AND OPERATION/MAINTENANCE SUPPORT

© Infoclimat.fr

- Production forecasts for day ahead market : made the 12/02/2016 before 12:00 CET
- > Wind & temperature forecasts based on NWPs running at 00:00 UTC
- Expert charts (maps) from different NWPs available over France : GFS (& WRF-NMM)
 - AROME (Météo-France)
 - **ARPEGE (Météo-France)**
 - ECMWF archive available online only with a granularity of 24h
 - UKMO (UK Met Office) archive available online only from +72h leadtime with a granularity of 24h
 - GEM (Canadian Meteorology Centre)
 - ensemble NWPs from ECMWF and NOAA institutes unavailable archive

Lead-time : 13/02/2016 at 00:00 UTC (+24h)

Lead-time : 14/02/2016 at 00:00 UTC (+48h)

> At +24h : NWPs very close with small pattern differences

At +48h : NWPs not in agreement - ARPEGE as an outlier, other models suggesting a similar tracking of the low pressure system

Expertise given that for CNR wind farms, only ARPEGE/AROME/ECMWF are used for DAM forecasts, a more important weight is applied to the **ECMWF** forecast, especially in northern France

Multi-model approach in APOGEES :

- 'F1 ARPEGE' : statistical adaptation from ARPEGE model
- 'F1 CEP' : statistical adaptation from ECMWF model
- 'F1mm' : statistical adaptation from a combination of both models, the best algorithm in average

Value-added forecasts :

'Expert' : forecast based on expertise when needed

Example of Maisnières wind farm in northern France

IEA Wind Task 36 Forecasting : Workshop on Experiences and Research Gaps

Example of Maisnières wind farm in northern France

Wind speed forecast

Example of Maisnières wind farm in northern France

Example of Maisnières wind farm in northern France

Cumulated production over 24 hours the 13/02/2016 : 39 MWh

Error level : sum of the hourly absolute errors the day ahead

 \Rightarrow Expert : **30.9** MWh \Rightarrow Forecast based on 'F1mm' : **45.4** MWh

Conclusion :

- > Meteorological expertise is applied :
 - when uncertainties are high (spatially : e.g. different low pressure systems trajectories and/or temporally : e.g. ramps or temporary peaks)
 - ✓ over one single wind farm or over several wind farms located in one region under the same meteorological influence.
 - ✓ by 'weighting' different NWPs, allowing an expertise at a larger scale
- At CNR, wind and solar energy forecasting is built on the meteorological experience acquired with its historical « hydro » activities

COMMUNICATION TO WIND FARM EXPLOITATION TEAM CNR FORECASTING REPORT

4. CONCLUSIONS WHAT'S NEXT ?

09/06/2016 - 25

IEA Wind Task 36 Forecasting : Workshop on Experiences and Research Gaps

CONCLUSIONS

Performance from our end-user point of view

- NWPs have improved...
- •...but more than further improvement, it could be worth working on very practical issues :
 - Providing hourly forecasts
 - Shortening supplying period after each run
 - Providing re-forecasts when updated
- No need for more than 3 good NWP sources
- Human expertise bring improvement in average, but has to be facilitated

Ongoing development / current interest

- Improvement of short-term wind power forecasting (doppler radar ? spatial nowcasting based on SCADA ?)
- Monitoring and assessment of human expertise
- Wind and solar ensemble forecasting
- Combined hydro, PV and wind energy production management studies

L'énergie au cœur des territoires

cnr.tm.fr

09/06/2016 - 27

IEA Wind Task 36 Forecasting : Workshop on Experiences and Research Gaps