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Abstract—As the penetration levels of RES increase and
climatic changes lead to increasingly more extreme weather
conditions, the uncertainty of the weather forecasts and power
production forecasts can no longer be ignored for the grid
operation. In order to support the power industry in the
adaptation of uncertainty forecasts into their business practices,
the IEA Wind Task 36 has started an initiative in collaboration
with the Max Planck Institute for Human Development to
investigate the existing barriers in the industry to the adoption
of such forecasts into decision processes. In the first part of
the initiative, a forecast game was designed as a demonstration
of a typical decision making task in the power industry. The
game was introduced in an IEA Wind Task 36 workshop
and thereafter released to the public. When closed for a final
evaluation, it had been played by 105 participants. We will
discuss our first experience with the experiment and introduce
some of the new features of the second and third generation
of experiments we are currently working on as a continuation
of the initiative. We will also discuss specific questions that
emerged when we started the experiments. With these future
experiments, we want to help the industry to learn about the
benefits of using uncertainty forecasts by providing training
tools and realistic simulation decision scenarios.

I. INTRODUCTION

The challenges of climate change require unprecedented
investments in renewable energy sources (RES) and a fun-
damental transformation of existing infrastructures such as
the power grid. A key challenge is that RES like wind
and solar power are characterised by an intermittent and
inherent variability that is unknown to fossil fuels and other
weather-independent energy sources. To deal with the inher-
ent variability of RES and seamlessly integrate them into
the power grid requires a combination of weather forecasts
and weather-to-power conversion methods. However, current
approaches are based on deterministic weather forecasts,
which provide no means to explicitly represent the varying
uncertainty of forecasts. As the penetration levels of RES
increase and extreme weather conditions rise with climatic
change, current methods have reached their limit because
they neither model nor convey forecast uncertainties. Instead,
new methods for power production forecasts are called for
that explicitly model uncertainty in order to make robust
predictions and allow to communicate forecast uncertainty
to market participants and system operators. Integrating
uncertainty into the decision process is important, because
due to the high flexibility, RES can be used at much lower

costs than traditional energy sources- although only one-
sided for down-regulation and with limited capacity for
balancing power at the grid level.

II. EXPLAINING THE NEED FOR THE INITIATIVE

The need to take into account and explicitly model fore-
cast uncertainty is at the heart of many scientific and ap-
plied enterprises. For instance, the ever-increasing accuracy
of weather forecasts has been driven by the development
of ensemble forecasts, where a large number of forecasts
are generated either by generating forecasts from different
models or by repeatedly perturbing the initial conditions of
a single forecast model. Importantly, this approach provides
robust estimates of forecast uncertainty, which supports
human judgment and decision-making (e.g. [?]). Although
weather forecasts and their uncertainty are also crucial for
the weather-to-power conversion for RES forecasting, the
industry has been reluctant to adopt ensemble methods and
other new technologies that can help managing highly vari-
able and uncertain power feed-ins under different weather
conditions. For instance, energy traders can use uncertainty
forecasting to optimize the amount of power generation that
they bid into the market, and transmission system operators
can define the required reserve to account for the uncertainty
in generation or be prepared for grid congestion much
further in advance than with the currently used deterministic
forecast. As a direct consequence of adopting these state-of-
the art methods, the renewable energy sector forgoes critical
potentials to reduce its vulnerabilities, build more robust pre-
diction models, and improve judgment and decision making
of the involved parties.

There are two intertwined challenges responsible for the
limited adoption of uncertainty forecasts in the renewable
energy sector. First, current energy management systems
simply cannot operate with probabilistic forecasts.

The second challenge is the human factor: New methods
and approaches are bound to fail if transmission system
operators and other relevant agents do not know how to
harness new forecast methods and systematically integrate
uncertainty in their decision-making processes.

Our aim is to address these challenges in a unified
and trans-disciplinary approach, bringing together hitherto
separate fields (meteorology, behavioral insights, cognitive
science, energy sector) and competencies. The overarching



goal is to demonstrate the value of using ensemble forecasts
in the RES sector.

III. OBJECTIVE OF THE EXPLORATORY PHASE

We want to answer the most pressing questions that
prevent the development by using behavioural decision ex-
periments to simulate real-time problems for specific user
groups using ensemble data and the corresponding power
production forecasts.

The results and feedback from these experiments can then
be used to formulate strategies for further research and how
to overcome the barriers that prevent the use of such forecast
information and the harvest of the associated benefits from
the additional information.

A. First Experiment – background and setup

The goal of the first experiment was to simulate a decision
making task in the power market, where there is high uncer-
tainty of the production forecasts and where wrong decisions
directly could be related to costs. Uncertainty in weather and
also power production forecasts is not a new topic (e.g. [2],
[3], [4], [5]) and has been discussed in many workshops
of industry groups such as the Energy Systems Ingetration
Group (ESIG) in the USA or the German Forecasting
Platform (IFP) run by the Fraunhofer Institute of Energy
economy and energy systems technology (IEE) and the
German Weather Service (DWD). Today, such information
is readily available and there seem to be obvious advantages
of using such information. However, it is also known that a
number of factors influence human responses and decisions
under uncertainty that go beyond a “rational” calculation of
costs and probabilities. In order to investigate the factors that
may underlie the hesitant reaction to probabilistic forecast
observed in industry, we designed the first experiment in
such a way that the participants had a direct comparison of
deterministic and probabilistic information as input to their
decision making task.

For the first experiment, we chose a trading situation
that provided different types of information for the decision
making:

1) deterministic forecasts of wind speed and wind power
2) probabilistic ensemble forecasts of wind speed and

wind power
In the experiment we assumed that the most traders would

agree that over time the success of trading wind and solar
power in a power market situation is related to the costs
of the balancing power that is required to level out forecast
errors. The income is relatively strongly correlated with these
balancing costs and that few events with high forecast error
would be the driver for the costs and reduction of the income.
We assumed that approximately 5% of the time, where the
forecasts are off track account for 95% of the costs over
a longer period of time, e.g. some months or a year. The
assumption here is that it is more beneficial to reduce the
balancing costs for large errors than seeking for a general
forecast improvement of 1-2%.

Fig. 1 shows one situation that was presented to the
participants in the first example, where the deterministic
forecast does not indicate or at least not clearly indicates

((a)) Deterministic forecasts

((b)) Probabilistic forecasts

Fig. 1. The deterministic forecasts (a) and the probabilistic forecast (b)
as example of one of the chosen situations. For each type of forecast, the
upper figure shows the wind power forecasts and the lower figure shows
the wind speed forecast. The orange line in the wind speed forecasts marks
the threshold (25 m/s) around which a high-speed shutdown can occur.

the risk for a high-speed shut down, whereas the probabilis-
tic forecasts upper percentiles P80-P90 and the maximum
forecast in wind speed clearly indicate the risk, confirmed
by the power forecast that shows the effect on the power
generation with the percentiles P10-P40.

As shown in the example plot, we simplified the task by
letting the users decide whether the generating power of
an offshore wind park should be traded fully or partially
given the possibility of a high-speed shutdown, where the
wind park stops generating due to excessive wind conditions.
Such so-called high-speed shutdown events occur in wind
ranges between 21-27m/s and are often referred to as cut-
off wind threshold at 25 m/s. Because the wind turbines are
not only calibrated to react on average wind speeds over
a certain period of time, but also short-lasting wind gusts
there is considerable uncertainty on a wind farm to enter
into high-speed shutdown (HSSD). All situations were real
world forecasts and reflect a decision that traders or operators
are faced with in their daily work.



B. Second Experiment - taking a different perspective

In the first experiment, we used an experimental design
where participants were shown the deterministic forecast first
before they could make a second decison based on the prob-
abilistic forecast for the second situations. One disadvantage
of this updating design was that it does not allow to quantify
whether or not participants will make better decisions by
using probabilistic uncertainty forecasts alone. Instead, the
participants essentially decided whether to hold on to the
previously made decision or change their mind. From a
psychological perspective this is a critical aspect to consider
when drawing conclusions from an experiment. For instance,
often people do not update their beliefs sufficiently to change
their minds. Thus, people may decided differently if they
would have seen the probabilistic forecast independent of
the deterministic forecast. For the second experiment we
will instead use a design suited to evaluate the benefit of
probabilistic forecasts independently.

The experiment will be setup in two different ways:
1)
2) Every participant makes all decisions based on deter-

ministic as well as on probabilistic forecasts
3) For each forecast type, the situations are presented in

blocks randomized among each other
4) For every participant, the order of blocks is randomly

chosen at the beginning.
In both runs, the forecast situations will be randomized

so that participants are not getting the same sequence of
forecasts to prevent that they remember the situations. The
goal is to be able to identify the benefits, if any, by using the
probabilistic forecasts and deterministic forecasts on their
own and explore problems in the use of the probabilistic
forecasts in more detail.

IV. SUMMARY OF THE LESSONS LEARNED FROM THE
FIRST EXPERIMENT

The first experiment showed us a number of interesting
aspects both from the participants reaction and the results of
the experiment:

• A significant amount of the participants would like to
have both probabilistic wind speeds and wind power
generation forecasts or a deterministic ”best guess”
inside the uncertainty bands

• The improvement in decisions with additional proba-
bilistic information was not equally strong in all cases,
which points to the importance to understand the indi-
cators in the forecast and the strategies that people use
to make their decisions

• A situation with low visible uncertainty caused partic-
ipants to expect no HSSD and to take a false risky
decision, which raises the questions how threshold val-
ues are intuitively or rationally evaluated for uncertainty
bands

V. LESSONS LEARNED AND NEXT STEPS

The first experiment in the series has revealed a number
of interesting aspects regarding decision making with and
without uncertainty information from probabilistic ensemble
forecasts. Although we can conclude that there is a potential

benefit, and most participants also confirmed in the follow-up
questionnaire that they clearly preferred to have probabilistic
forecasts at hand when making decisions on extreme events,
there are still many open questions. Some of these will be
answered in the second experiment, for instance, about the
impact of either probabilistic or deterministic forecasts on
their own.

Additionally, this first experiment in the planned series
has been focusing solely on decision making with the help of
graphical time series forecasts for both, the deterministic and
the probabilistic forecast types. However, we have not been
investigating, as described e.g. in [6], whether the type of
representation of the uncertainty also could have an impact
on decisions, i.e. whether some or all end-users may be
more likely to make better decisions, if they would get the
probabilistic information in a text format. Or, if for example
a graph or a series of graphs of the large-scale weather
situation in a horizontal plot as shown in Fig. 2 could be
useful for the decision making process. The example shows
the wind speed (colors), wind direction (arrows) and isobars,
joining together places of equal atmospheric pressure, for the
time of highest probability of a shut-down from the example
in Fig. 1 as mean (large left graph) of 75 forecasts and the
minimum (upper right) and maximum (lower right) thereof,
respectively.

Fig. 2. Weather maps of wind speed (color scale), wind direction (arrows)
and isobars. The large graph is the EPS Mean of 75 members, the upper
right graph is the minimum and the lower right graph the maximum wind
speed of the 75 members in each grid point.

In our future work, we will consider the following research
directions (focused on low probability, but high impact
scenarios):

• Scenarios with wind speeds above cut-off value for
multiple hours, that uncertainty forecasts generated with
a statistical model are not able to capture

• Scenarios with extreme balancing power prices (this
sometimes occurs in the Nord Pool or EPEX market),
where forecast errors in one direction can be highly
penalized



• Presenting percentiles versus all ensembles members to
the decision-maker to investigate how decisions may
change when only a subset of ensembles members are
presented.

• Investigate whether decision-makers are more risk
averse or prone given probabilistic forecasts and
whether the amount of uncertainty makes a difference

Examples for case 1 are scenarios, where the (1) event
was never observed in historical data or (2) the tempo-
ral dependency structure is not modelled by the statistical
approach used. An experiment would allow to investigate
how well different modeling approaches are understood and
applied correctly when introduced to the industry. Since
the science behind the probabilistic approaches are rather
complicated, the IEA Wind Task 36 has started to establish
documentation about different approaches broken down to
a level that adressses the typical educated power engineers.
However, it is unclear whether this type of scenario and
its hidden uncertainty play a role in the currently observed
barriers of implementing probabilistic applications.

An example for case 3 could be to use the probabilistic
game from utility theory to study the choice between a feed-
in tariff y (guaranteed income) or direct participation in the
electricity market with probability p of earning less than y
or 1− p for winning more than y.
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