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Chapter 1

Background and Objectives

1.1 BEFORE YOU START READING

This is the first part of a series of three recommended practices that deal with the development

and operation of renewable energy forecasting solutions in the power market. The first part

Forecast Solution Selection Process, which is the current document, deals with the selection

and background information necessary to collect and evaluate when developing or renewing

a forecasting solution for the power market. The second part Benchmarks and Trials, of

the series offers recommendation on how to best conduct benchmarks and trials in order

to test or evaluate different forecasting solutions against each other and the fit-for-purpose.

The third part Forecast Evaluation, provides information and guidelines regarding effective

evaluation of forecasts, forecast solutions and benchmarks and trials. If you already have

experience in setting up a forecast solution and you have an up-to-date IT infrastructure, then

it is recommended to go straight to part 2 or 3. However, if you are considering renewal

of your IT infrastructure, require new forecasting products, need to extend or reduce the

amount of vendors engaged or you are starting from scratch to build a forecasting solution,

then the information in this recommended practices guideline will provide input to important

considerations in this process. An overview of the decision support tool to help develop

structured processes in the design and planning for a new or renewal of a forecasting solution

can be found in chapter 3, while chapters 1 and 2 provide background information and initial

considerations. It is recommended to use the table of contents actively to find the topics that

are most relevant for you.

1.2 BACKGROUND

The effectiveness of forecasts in reducing the variability management costs of power gener-

ation from wind and solar plant is dependent upon both the accuracy of the forecasts and the

ability to effectively use the forecast information in the grid management decision-making

1



2 Chapter 1. Background and Objectives

process. Therefore, there is considerable motivation for stakeholders to try to obtain high

quality forecasts and effectively use this information as input to other operational processes

or trading. This document is intended to provide guidance to stakeholders who are seeking a

forecasting solution that fits their purpose and enables them to work efficient and economi-

cally responsible. In recent years, carrying out trials or benchmarks seemed to be an industry

practice with an easy and straight forward decision process for many. In reality, trials are

often expensive for both the end-user and the vendor, are not straightforward, nor entirely

conclusive. Benchmarks have little value for commercial vendors, except in their start-up

phase, and end-users can often not count on results that reflect state of the art. Further,

if trials and benchmark studies lead to a dissatisfying result, forecasting solutions become

increasingly criticized for their value. And, providers that may have had the most technically

qualified solution at hand, but did not score best at a specific (maybe simplified) test, may be

deselected. This recommended practices document will therefore focus on the key elements

to consider when seeking to establish or renew a forecasting solution that fits ones purpose. In

summary, this document provides recommendations and a decision support tool to establish

procedures for an effective selection process.

1.3 OBJECTIVES

This document is intended to serve as guidance and standard for private industry, academics

and government for the process of obtaining an optimal wind or solar power forecast solution

for their applications and, in particular, it provides guidance to the design and requirements

for effective renewable energy forecasting solutions. These guidelines and best practices

are based on years of industry experience and intended to achieve maximum benefit and

efficiency for all parties involved.

1.4 DEFINITIONS

In the discussion of the process of obtaining the best possible forecasting solution, there are

a number of terms and concepts that are used. Several of the key terms and concepts are

defined in the following. Note, these definitions are kept as general as possible with a focus

on forecasting processes in the power industry and may not have such a completely general

character to be applied to other areas of business.

• Request for Information (RFI): a RFI serves the client to get information about the

state-of-the-art business practices and available commercial products in the prepara-

tion or design of a forecast application or solution for a specific target process. By

providing information about the target application, a client can ask vendors for their

recommendations and experience to solve specific tasks. Such information is useful in

the preparation and design of a new system, but also for systems that need to be rebuilt

due to changing requirements.
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• Request for Proposal (RFP): a RFP is a tender process, where the client prepares a

document laying out the system design of a forecasting solution and asking vendors

to propose a solution and price quote. Usually, a set of minimum requirements are

provided that become part of a contractual agreement for the awarded vendor. Re-

newable Energy Forecast Benchmark: an exercise conducted to determine the features

and quality of a renewable energy forecast such as wind or solar power. The exercise

is normally conducted by an institution or their agent and usually includes multiple

participants from private industry forecast providers or applied research academics.

• Renewable Energy Forecast Trial: an exercise conducted to test the features and

quality of a renewable energy forecast such as wind or solar power. This may in-

clude one or more participants and is normally conducted by a private company for

commercial purposes. A trial is a subset of a Renewable Energy Forecast Benchmark.





Chapter 2

INITIAL CONSIDERATIONS

Key Points

This part provides guidelines for those whose task is to provide a plan and justification

for a forecasting solution selection process. It intends to assist in finding the necessary

information when navigating through the vast jungle of information, opinions and

possibilities end ensures that crucial details are being considered.

2.1 TACKLING THE TASK OF ENGAGING A FORECASTER

FOR THE FIRST TIME

The most important considerations and first question to answer, when starting out to plan a

forecasting solution is to be clear about the desired outcome. A lot of time and resources

can get wasted for all involved parties on trials and benchmarks that are not aligned with

requirements, also when planned and conducted by personnel with little or no experience

in the subject. To avoid this, the recommended practice is to carry out a market analysis

in the form of a request for information (RFI) and to establish a requirement list (see also

APPENDIX B). In some cases, it can be beneficial to test vendors or solutions prior to

implementation. The difficulty with this method lies in the evaluation of tests, especially,

when they are short in time. In many cases they do not answer the questions an end-user needs

answered, because such tests mostly are simplified in comparison to the real-time application

and, but still require significant resources. For such cases, this guideline provides other

methods for an evaluation of different forecast solutions/vendors. The pitfalls and challenges

with trials and/or benchmarks are the topic of part 2 of this series of recommended practices.

The following table shall summarise some of the aspects and help the decision process as to

where and when such pilot projects, trials or benchmarks may not the the best choice when

designing and choosing a forecast solution. The column recommendation in Table provides

other methodologies that may be used to evaluate a forecast solution. Additionally, a typical

5



6 Chapter 2. INITIAL CONSIDERATIONS

set of questions to be asked to service providers will be provided in APPENDIX A??.

Table 2.1: Recommendations for initial considerations prior to forecast solution selection for typical end-user

scenarios

Scenario Limitation Recommendation

Finding best ser-

vice provider for

a large portfolio

(> 1000MW) dis-

tributed over a

large area

Test of entire portfolio is ex-

pensive for client and ser-

vice provider in terms of

time and resources. Sim-

plifying test limits reliabil-

ity of result for entire port-

folio.

RFI and RFP, where service

providers methods are evaluated and

incentive scheme on the contract

terms provides more security on per-

formance.

Medium sized

Portfolio

(500MW< X

< 1000MW) over

limited area

Test of entire portfolio is ex-

pensive for client and ser-

vice provider in terms of

time and resources. Simpli-

fying tests limits reliability

of result for entire portfolio.

RFP, where service providers meth-

ods are evaluated. Building of a

system that enables change of ser-

vice provider and incentive scheme

may be more efficient than a test in

the long run. (More detail on in-

centive schemes are found in section

3.9.3.3 and Part 3 of this guideline

[ieawindtask36RP2019]).

Finding best ser-

vice provider for

small sized portfo-

lio (< 500MW)

Test of portfolio requires

significant staff resources, a

budget and a minimum of 6

months.

Difficult to achieve significance on

target variable in comparison to re-

quired costs and expenses trial costs

makes solution more expensive. Test

is possible, but expensive. Cheaper

to setup an incentive scheme and a

system, where the suppliers may be

exchanged relatively easily.

Micro portfolio (<

100MW) or single

plants

Cost of a trial with many

parties can easily be higher

than the cost of 1 year of

forecasting. Time for a trial

can delay real-time experi-

ence by up to 1 year.

Evaluation of methodologies and set-

ting up the internal system with

an incentive scheme and ease of

service provider exchange is more

beneficial. (More detail on incen-

tive schemes are found in section

3.9.3.3 and Part 3 of this guideline

[ieawindtask36RP2019])
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Scenario Limitation Recommendation

Sale of generation

at power market

Best score difficult to de-

fine, as sale is dependent on

market conditions and a sta-

tistical score like RMSE or

MAE cannot reflect the best

marketing strategy, consid-

ering the uncertainty of a

forecast and the associated

costs

Strategic choice of forecast provider

and incentive scheme better than real-

time test. Strategic choice may

be: choice of vendor in compar-

ison to others that use different,

uncorrelated weather forecasts, un-

correlated weather-to-power model,

unique forecast methodology, flex-

ibility, expandable, etc. Incentive

scheme ensures resources and incen-

tive for continuous performance im-

provements (see section 3.9.3.3 , Part

3[ieawindtask36RP2019]).

Market share of

service provider is

high

Monopolies in the power

market mean that forecast

errors are correlated among

generators.

This could lead to increased balanc-

ing costs. The forecast error might be

low, but the costs for errors may be

disproportionately high. Ask about

the market share of a provider and do

not choose one with a share > 30% as

the only provider!

System operation

in extreme events

Today, extreme (or rare)

events are better fore-

casted,when considering

weather uncertainty.

Statistical approaches relying solely

on historic information may not be

sufficient. A PoE50 (probability of

exceedance of 50%) needs to have

equally high probability in every time

step above and below. The IEA

Task 36 WP 3 has been dealing with

uncertainty forecasting and provides

recommendations for such situations.

See section . Forecasting solution

needs to be weather and time depen-

dent, i.e. only physical methodolo-

gies (ensemble forecast systems) ful-

fill such tasks

Critical Ramp

forecasts

Critical ramp forecasts are

part of an extreme event

analysis and require proba-

bilistic methods with time

dependency

Consider difference between a ramp

forecast and a critical ramp as ex-

treme event analysis that requires

time + space dependent prob. meth-

ods such as ensemble forecasts. See

references for uncertainty forecasts.
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Scenario Limitation Recommendation

Blind forecasting,

i.e. no measure-

ment data avail-

able for the park or

portfolio

Only useful for portfo-

lios, where small errors

are canceled out and in-

dicative regarding perfor-

mance. Without measure-

ments, forecast accuracy

will be non-representative

of what accuracy can be

achieved by training fore-

casts with historical data.

Evaluation can only be carried out for

day-ahead or long-term forecasts, if

measurements are collected through-

out the trial. If you have a portfolio

> 500MW, a blind test against a run-

ning contract can provide an inexpen-

sive way to test the potential of a new

provider. For single sites, the ben-

efits of training are so large (>50%

of error reduction at times) that blind

forecasting is not recommended. It

wastes resources for everybody with-

out providing useful results.

Dynamic reserve Deterministic forecasts can-

not solve reserve require-

ments.

It is necessary to apply probabilistic

methods for reserve calculation for

intermittent resources such as wind

and solar. See section ??.

2.2 Purpose and Requirements of a Forecasting Solution

Once the limitations are defined, the next step is to define what objectives the project has. As

outlined in Table, it poses very different forecasting strategies to the project, if the objective

is e.g. system balance of renewables or selling generated electricity at the power market. In

the first task, extremes must be considered and risks estimated; mean error scores are not that

important. Large errors are most significant, as they could potentially lead to lack of available

balancing power. In the second case, it is important to know the uncertainty of the forecast

and use a forecast that is uncorrelated to others. The mean error of a forecast is important,

but not a priority target, if the target e.g. is to use a forecast that generates low balancing

costs. This is not always the same, because errors that lie within the forecast uncertainty

are random. Such errors can only be reduced by strategic evaluations and decisions, not by

methodology. If the objective is to calculate dynamic reserve requirements, probabilistic

forecasts are required and should be part of the requirement list. When choosing a forecast

solution, understanding the underlying requirements is key. It is not enough to ask for a

specific forecast type without specifying the target objective. For this reason, defining the

objective is most important. And, if there is no knowledge in the organisation regarding the

techniques required to reach the objective, it is recommended to start with a RFI (see section

1.4 ) from different forecast providers and thereby gain an understanding and overview of the

various existing solution and their capabilities.
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2.3 Adding Uncertainty Forecasts to Forecasting Solutions

In any power system that is in the transition to carbon neutrality, wind and solar generating

resources are part of the solution. In order to integrate larger amounts of these intermittent

and variable energy resources, forecast uncertainty needs to be reflected and taken into

account in grid related operational decision-making processes. The future of renewable

energy systems cannot be economically operated without taking uncertainty into account.

In the world meteorological organization’s (WMO) guidelines on ensemble prediction

[wmo2012], the WMO warns about ignoring uncertainty in forecasts, if an end-user receives

a deterministic forecast. The WMO argues that if a forecaster issues a deterministic forecast

the underlying uncertainty is still there, and the forecaster has to make a best guess at the

likely outcome. Unless the forecaster fully understands the decision that the user is going to

make based on the forecast, and the impact of different outcomes, the forecaster’s best guess

may not be well tuned to the real needs of the user.

Weather related decision-making hence requires a deeper understanding of weather un-

certainty, the way any weather service provider produces uncertainty of weather forecasts,

and how such forecasts are to be translated into end-user applications. In [bessa2017], a

thorough review of uncertainty forecasting techniques, methods and applications has been

made. This review will be basis to the following definitions and recommendations for the

selection of forecast solutions, where uncertainty forecasts are to be incorporated. There

will be named gaps and pitfalls and how to best apply uncertainty forecasts in power system

applications.

2.4 INFORMATION TABLE FOR SPECIFIC TASKS AND TAR-

GETS

Table 2 lists a number of targets and points to the chapter or part of this guideline series,

where the topic is described in detail. The table provides some typical targets and where to

find information on how to achieve the best solution for that target.

Table 2.2: Information table for specific targets

Target Information

How to find the best forecast solution Section 3

Creating a requirements list Section 3.3, 2.2, 3.2.1, and 3.2.2

Deterministic versus Probabilistic Section 3.2.2 and ??

Decision support tool and practical guide to forecast-

ing

Figure 3.1
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Target Information

Evaluation of vendors: interviewing or conducting

trial?

Section 3.9 and References in

section 5

Do I need to test reliability and consistency? Section 3.2.1 and 3.9.2.1

How do I know which forecast solution fits my pur-

pose best ?

Section 2.2 and 3.1 , APPENDIX

A

How do I build up sufficient IT infrastructure for a

trial?

Part 2: Trial Execution

Which metrics for what purpose? Part 3: Evaluation of forecasts

Step-by-step guide for trials and benchmarks Part 2: Trial Execution



Chapter 3

Decision Support Tool

Practical usage of the Decision Support Tool: The decision support tool in Figure

3.1 provides a high-level overview of the process for finding the most suitable forecast

solution and vendor, respectively. The sections provide guidance in how to use the

decision support tool with detailed descriptions and explanation to provide the low-

level information for the detailed planning and design of the decision process.

Notice for the practical usage of the Decision Support Tool: To find the de-tailed

recommendations, the numbers in the boxes of Figure 3.1 correspond to the head-lines

in the following sections.

From an end-user perspective, it is a non-trivial task to decide which path to follow, when

implementing a forecasting solution for a specific application. Whether this is at a system

operator, energy management company, a power producer or power trader, there are always

multiple stakeholders involved in the decision-making process. A relatively straight forward

way to decide for one path or another is to use a decision support tool.

Visualisation of the Decision Support Tool

Figure 3.1 shows a decision support tool aimed to high- level decisions of managers and

non-technical staff when establishing a business case for a forecasting solution. Indepen-

dent on the experience with forecasting solutions, the high-level thought construct shown

in Figure 3.1 is targeted to assist in considering the required resources and involvement of

departments and staff for the decision process. The decision tool is constructed to begin with

initial considerations to establish a "Forecast System Plan". The tool aims to assist in taking

a decision on the major dependencies to the planned item. There are cross references in the

decision tool and referrals to a different decision streams, dependent on the answer at each

step of the decision flow.

Starting at the very top, the first major dependency when planning a new or renewal of

11
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Figure 3.1: Decision Support Tool
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a forecasting system is the IT infrastructure. Dependent on the status of IT infrastructure,

the recommended procedure splits up here and follows in different paths. This is not to be

understood that the IT infrastructure has higher priority over the forecasting solution itself.

It is rather to sharpen the awareness that if the IT infrastructure is not in place yet or needs

renewal for a new technology to be implemented, the IT needs to be part of the decision

process from the very beginning.

The decision support tool in Figure 3.1 provides a high-level overview of the process for

finding the most suitable forecast solution and vendor, respectively. The following sections

provide guidance in how to use the decision support tool with detailed descriptions and

explanation to provide the low-level information for the detailed planning and design of the

decision process.

3.1 INITIAL FORECAST SYSTEM PLANNING

The planning of a forecasting system for renewables is a complex task and highly individual.

This guideline therefore focuses solely on aspects that are of general planning and manage-

ment tasks specific to the implementation of wind power or solar power forecasts into an

operational environment. Note that the limited information and considerations about fore-

cast technologies or methodologies has the objective to provide guidelines on the impacts of

commonly implemented technologies in the implementation and decision process. On the

other hand, there is strong focus on the IT infrastructure as one of the most crucial tasks in

the implementation and integration of forecast solutions that are prone to become limiting

factors for changes at later stages. For that reason, it is recommended that the IT infras-

tructure is established or, if already available, evaluated together with the planning of the

forecast solution and methodology, in accordance to its ability to develop along with changes

in forecast practices, possible statutory changes, etc. Databases are prone to have limitations

that prevent changes to incorporate more information or store information in a different way.

Such consideration need to take place prior to and should be part of the decision process and

the requirement list (see section 3.3 ).

3.2 IT INFRASTRUCTURE CONSIDERATIONS

The starting point of the tool is the IT infrastructure. If a company has already built an

appropriate infrastructure, finding a solution or vendor is more straight forward. The rea-

son for this is that in this case, the forecast provider will need to conform to file formats,

communication protocols or security constraints, for example. If an IT infrastructure for

the forecasting solution is to be established or renewed it needs to be closely following

the technical requirements of the solution. In the other case, i.e. no IT infrastructure has

been built yet, an internal analysis of the needs are required. In this analysis, it is impor-

tant to know, whether there is a short-term goal with an objective to be reached with time
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constraints, or whether it is a long-term plan that needs to be satisfied. Usually such differ-

entiation is dependent on the political landscape and adopted policies for the development of

renewables in the country. The important aspects in the IT infrastructure to be considered are:

• database structure

• communication layer

• monitoring and error handling

• data storage and historic data accessibility

In general a forecast system interface, whether in-house or outsourced requires multiple

data streams, starting from measured power and weather variables. Usually, there is a

connection to the power units SCADA (Supervisory control and data acquisition) system.

However, the measurement data needs storage and a data flow to the forecaster needs to be

added as one more of the various internal data flow processes.

It needs to be decided, whether there is a need to access other external data sources, such

as NWP data, or the forecast data itself.

Dependent on the setup of the forecasting solution, it is necessary to evaluate how fast

accessible historic data has to be, for example to carry out internal analysis, external data

delivery to vendors, etc.

3.2.1 IT requirements for single versus multiple forecast vendors

Impacts on multiple vendor solution:

• infrastructure more complex

• database requirements are higher due to higher data volumes

• Strategy required for forecast: mixing versus primary/secondary forecast

IT infrastructure Impacts for single vendor solution:

• reliability requirement of solution high

• monitoring requirement higher for up-time

• higher requirements for quality control of forecasts

• less data volume than for multiple-vendor solutions

• database structure less complex than for multiple-vendor solutions
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3.2.2 IT requirements for deterministic versus probabilistic forecasts

From an IT infrastructure and architectural perspective, deterministic and probabilistic fore-

casting solutions are quite different. The database requirements are by a factor of 10 to 100

higher for the latter. Dependent on the way the probabilistic forecasts are used, they add

significant amounts to the storage requirements. Nevertheless, storage and computational

resources are changing with changing requirements in industry and hence should not per se be

considered a barrier or limitation for the integration or implementation of new technologies.

But, they need consideration and careful planning. The advantages and disadvantages of

the deterministic versus the probabilistic solution from a IT perspective are similar to single

versus multiple providers in section 3.2.1 .

3.3 ESTABLISHMENT OF REQUIREMENT LIST

Establishing a requirement list for a forecasting solution is highly individual and depends

on many factors. Every end-user will have very specific needs to fulfill. There are however

common areas that require consideration. This is how the following recommendation list has

to be interpreted.

Two of the fundamental aspects when establishing a requirements list are:

1. Description of the current situation

In this process, it is imperative to describe exactly all processes, where forecasting is

required and how these processes are interlinked. Here it is essential to get the different

departments involved, also the IT department. The more accurate you can describe the

situation at hand, (e.g. integration plans, use of forecasts, market situation, statutory

aspects, IT restrictions, limitations and methods for data exchange exist, current or

future challenges, etc.), the more straight forward it will be to (1) ask questions to

the vendors regarding forecasting methodology, but also (2) get clarity of the involved

processes enabling forecasting.

2. Engage vendors, stakeholders and independent consultants

Questions to vendors should be of technical character regarding forecast methodology,

but also on available data exchange methodologies, required input data for the models

and system support. If you already have a forecast vendor, it is recommended to

engage with the forecaster to discuss the current situation and where the forecaster sees

limitations and potential for improvements. Often, forecast providers need to adopt

their forecasts to a specific need and even though a new technology may be available,

it is not used due to current limitations. Other vendors, stakeholders and independent

consultants may at any stage be engaged, not only when it comes to establishing a

new or renewal of a forecasting system. For new systems, it is recommended to

engage different forecast vendors and stakeholders to provide insight from a variety of

experiences. In all cases, it is essential to describe the planned objective and name
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limitations, if they are already known. The more information that can be shared the

better a vendor, stakeholder or consultant can evaluate what is considered the most

appropriate solution.

Appendix A contains an additional listing of recommended considerations that are

applicable also for RFIs.

3. Description of the envisaged Situation

The description of the envisaged situation is most important for the implementation

of a solution. Analysis of the current situation, the forecast vendor(s) input and other

organizational and statutory requirements should lay the basis for an envisaged new

system. It is recommended to put as much detail into this part as possible. The

following requirement list assists in defining all aspects for the planning phase of a

forecasting system. Recommendation in short: Describe (1) the current situation,

(2) engage vendors and stakeholders and (3) describe the envisaged situation in great

detail. Ask specific questions that are required to get the highest possible level of detail

for the decision process.

Recommendation in short: Describe (1) the current situation, (2) engage vendors

and stakeholders and (3) describe the envisaged situation in great detail. Ask specific

questions that are required to get the highest possible level of detail for the decision

process.
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3.3.1 Requirement List

The following areas are recommended to be considered in the list:

IT infrastructure:

• communication/data exchange with the forecast vendor(s)
• communication/data exchange with the assets (wind/solar parks)
• database and storage implications
• accessibility of data information of internal users
• application interfaces to internal tools (e.g. graphics, models, verification,

metering)

• information security policies

Forecast Methodology and Attributes:

• Weather input
• Methodology of weather to power model
• Application/model background for each forecast product
• Forecast time horizons
• Forecast frequency
• Forecast uncertainty

Support and Service:
• service level for each product (e.g. 24/7, business hours etc.)
• system recovery
• failure notifications and reporting
• escalation procedures
• service documentation
• contact list for different services
• staff training

Contracting:

• contract length
• amendment possibilities
• additional work outside contract
• licenses
• confidentiality (NDA)
• insurances
• sub-contracting
• Price table for each product category

Performance and Incentivization:

• verification methods
• verification parameter
• definition of payment structure (boolean or sliding areas)
• expected accuracy for each forecast horizon



18 Chapter 3. Decision Support Tool

3.4 SHORT-TERM SOLUTION

In this case, current requirements should be listed and analyzed in accordance with possible

time limitations. It is recommended that a short-term solution is sought, if the political

situation does not seem to be stable to make long-term investments, or a here-and-now issue

needs to be solved and experience gained. In such cases, a relatively simple methodology

that can be implemented fast and easy is the best way forward. Today, this can be found by

carrying out a RFI, where vendors can suggest how to best and easiest fulfill very specific

needs. Due to IT constraints in many organizations, such solutions sometimes are set up with

delivery by Email. This is not a recommended practice for security and reliability reasons,

but can help to fill a gap between a long-term solution and an urgent need.

Despite the shortcomings, interim solutions are recommended as they are valuable in

respect to experience with forecasting data and its handling inside the organization. If such

solutions are employed while a long-term plan is being developed, it can be of great benefit

for the long-term solution. Such solutions should last approx. 18-24 months. Planning for a

long-term solution should ideally start after 12 months.

The danger lies in staying with an interim solution, if it has real limitations on security

(e.g. email delivery) and reliability, as such limitations may not be problematic for a long

time, but reliance on non-redundant systems can cause sudden uncontrollable situations. For

this reason, we posted the question about the IT system at the end of the short-term solution,

as this is a crucial part in the next step. We recommend that this is taken as a priority topic,

once practical experience with forecasting has been gained.

3.5 LONG-TERM SOLUTION

Developing a long-term solution can be cumbersome and difficult, as many aspects have

to be considered, from policies to governmental plans or corporate strategies. A practical

way forward is to conduct a full-scale pilot project, where different solutions are tested and

verified over a period of at least 1 year. The advantage of such a pilot project is that there is

the possibility to verify and evaluate different solutions and their fit for purpose over a longer

time span.

Moreover, a pilot project is characterised by:

1. Involvement of all relevant departments (internal and external parties/stakeholders)
2. Establish system requirements
3. Pilot maybe used as interim solution

The disadvantage is that it takes a long time and hence is costly and it is not given that there

is a very clear winning solution to a specific area or task. On the other hand, to find the most

appropriate long-term solution needs many considerations, not only technically, but also

economically and whether a solution is future compatible. So, the experience of the vendor

in adjusting, maintaining and developing a solution with changing needs may be a challenge

for some and the business philosophy for others. Such vendor policies can be identified and
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clarified when carrying out long-term tests. The box therefore feeds into the question about

an appropriate IT system. If this has not been established, it is recommended to prioritise

the IT before going further.

The end of a pilot project has therefore 3 further paths:

1. vendor selection
2. redefining requirements to start a solution bottom up
3. carrying out a RFP with the identified requirements.

3.6 GOING FORWARD WITH AN ESTABLISHED IT SYS-

TEM

In the case an IT system has been established and new vendors or a renewal of the system

is the objective for the project, there are various possibilities to move forward. Crucial in

this phase is again to set target and objectives. If the target is to find out, whether there exist

forecast vendors on the market that may provide forecasts with other methods or for a lower

price, it may be a good way forward to carry out a trial or benchmark. Dependent on the

structure of the system, or complexity of the system and time constraints, a benchmark/trial

or a RFP as alternative are recommended. One crucial criterion when deciding on the two

alternatives RFP or trial/benchmark in existing IT environments is whether the IT structure

can handle multiple suppliers.

If this is not the case, any evaluation against an existing supplier can be cumbersome and at

times impossible. The recommended practices guideline part 2 is going into detail with this

topic, which is mostly related to:

• representative (including consistency)

• significant (including repeatable)

• relevant (including fair and transparent)

These are the key points when carrying out a comparison.

3.7 COMPLEXITY LEVEL OF THE EXISTING IT SOLU-

TION

Apart from accuracy or statistical skills of forecasts, there are also other aspects to be

considered when choosing a forecast supplier. It has been observed that such evaluations

based on non-technical skills or skills leading to forecast performance for a specific purpose

have been underestimated in their importance. One aspect is the ability to improve, which

is fully excluded with a trial/benchmark as sole decision-making criterion (besides price)

as capability of vendors. It is often forgotten that long-term experience in a specific area
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can provide significant advantages. On the other hand, verifying only a small part of a

complex system for practical reasons may result in a misleading result (see 3.6 representative,

significant and relevant).

The complexity of a system that a forecast solution must adapt to, but also the data flow

that complex systems inherit, is seldom easy to simulate in trials and will always disqualify

some participants, when it comes to the real system. To conclude, the complexity of a system

and the purpose of a forecast within a complex corporate structure are significant aspects to

consider in a forecast solution selection.

Recommendation: The path to follow in case of complex structures and requirements

are hence best performed by a RFP process, where core capabilities should be

evaluated, when choosing a forecasting solution.

3.8 SELECTION OF A NEW VENDOR VERSUS BENCHMARK-

ING EXISTING VENDOR

If there are no time constraints and the complexity level of the running system is not too high,

or a new system is in the process of being built, a trial or a benchmark exercise can be very

useful in order to gain some experience in the building process.

Recommendation: Conduct a trial in case a new vendor has to be selected and a trial

can be carried out in such a way that the results are fair, transparent, representative

and significant. Carry out a benchmark, if the purpose is not from the outset to engage

a new vendor, but also to compare the capabilities of a vendor with other vendors or

against newer technology. In both cases the invited vendors need to be notified of the

purpose of the exercise.

3.9 RFP EVALUATION CRITERIA FOR A FORECAST SO-

LUTION

If complexity levels are high and if time constraints do not allow for a lengthy trial or

benchmark, the RFP should be compiled with care in order to fulfill all requirements and yet

not ask for more than needed. The most important evaluation criteria for a forecast solution

to be defined in a RFP is:

• the type of forecast that is required (e.g., hours-, day-, or week-ahead)

• the methodology that is applied to generate these forecasts
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• compliance to requirements

It is recommended that this first step should be vendor independent. And, if this cannot

be defined, it is recommended to first conduct an RFI to scan the industry on their capabilities

and their recommendation which type and methodology should be applied for the specific

needs. Appendix B contains typical questions for an RFI. Only when the forecast type and

methodology is defined, the vendor comes into play. The important factors to consider here

are:

• capabilities (experience)

• support and maintenance services

The sections below describe these considerations in detail.

3.9.1 Forecast Solution Type

Most users will agree that they want to obtain forecasts with the best possible forecast accuracy

for their application. A benchmark or a trial has in the past often been viewed as a way to

determine which provider is most likely to deliver the best possible forecast performance. In

theory, this is a reasonable objective. In practice, it is not recommended to rely solely on

a test. The following subsections will address a number of key issues associated with the

dilemma of finding the best forecasting solution with a simple and non-costly exercise for

both the end-user and the forecast provider.

3.9.1.1 Forecast solution Type

Single versus multiple forecast providers It has been widely documented (e.g. Nielsen et al.,

2007, Sanchez, 2008) that a composite of two or more state-of-the-art forecasts will often

achieve better performance (accuracy) than any of the individual members of the composite

over a statistically meaningful period of time. Indeed, many of the FSPs internally develop

their approach and services on that basis. And, there are well founded reasons for an end-

user to consider the use of multiple FSPs to achieve better forecast accuracy. However, in

a practical sense, there are several advantages and disadvantages that should be considered.

When building up a solution, it is recommended to consider the following aspects: Benefits

of using multiple vendors:

1. There are a number of FSPs in todays forecast market that exhibit performance that is

close to the state-of-the-art. It may be advantageous for reliability to assemble a set of

state-of-the-art forecasts, unless they are highly correlated.

2. Higher forecast accuracy can often be achieved by blending forecasts from multiple

uncorrelated1 FSPs.
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3.9.1.2 Drawbacks of using multiple vendors

The benefits of having multiple vendors also contain inherent challenges for the end-user:

1. Increased internal costs, even if two cheap vendors may be less costly than one high-

end forecast vendor, employing multiple vendors increases internal costs significantly

due to increased amounts of data and IT processes.

2. Blending algorithms need to be intelligent. Multiple forecasts can be beneficial, but

only, if the algorithm is intelligent to only blend/mix, if all forecasts are available and

easy to retrain, if forecast statistics change. With two forecast vendors this is relatively

easy. If there are more than two, it becomes more complex.

3. Forecast improvements are difficult to achieve with a multi-forecast provider solution.

When improvements are achieved on the vendor side, the blending algorithm is becom-

ing inconsistent and can result in worse scores than before, unless long-term historic

data can be delivered. In other words, the handling and the improvement of forecasts

are complex and difficult with multiple forecasts.

4. Multi-vendor Solutions cannot be incentivized as easily to achieve continuous perfor-

mance increase over time. Although incentive schemes can be a good way to provide

resources to the FSP for continuous improvements, in a multi-vendor environment, this

can be counter productive, as changing statistical characteristics of forecasts can have

a bad influence on the resulting blended forecast. Any end-user needs to be aware of

this pitfall, when choosing a solution and take mitigating measures.

5. Multiple points of failure - with multiple forecast providers, the IT infrastructure needs

to contain more logic to deal with one or more data streams when there are, for example,

delivery disruptions, timeliness, or quality issues.

3.9.1.3 Deterministic versus Probabilistic

Many forecasting tasks need a discrete answer. For that reason, forecasting solutions have

been mostly fed with deterministic forecasts in the past. Although weather forecasts and

hence also power forecasts of intermittent resources such as wind and solar power, contain

inherent uncertainties, probabilistic forecast products have been associated with forecasts not

being discrete. The probability of a generic power generation at time x cannot be used in

a trading application with the purpose to bid into the market. As penetration of variable

generation resources increase and digitialization increases, the uncertainty information for

decision taking can and is being processed by algorithms, also those whose output needs a

discrete answer. Deterministic forecasts by default suppress the underlying uncertainty in the

forecasts. By using probabilistic forecasts, this uncertainty can be taken into consideration

in the decision processes.
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The most common products of uncertainty or probabilistic forecasts are the probability

of exceedance (PoE) values, typically given as PoE05, PoE50 and Poe95, quantiles, or

percentiles or confidence bands (see Glossary for definitions).

The advantage of probabilistic/uncertainty forecasts in comparison to the deterministic

best guesses is the possibility to act upon the probability of an event to occur, rather than

being surprised, when the deterministic forecast is wrong. In power markets, for example, a

probability of exceedance of 50% (PoE50) is an important parameter for a system operator, as

such forecasts prevent the market to be able to speculate against system imbalance. Extreme

ramping, high-speed shut-down risk, unit commitment and dynamic reserve allocation are

other examples, where probabilistic forecasts are beneficial or required. In other words,

wherever there are some kinds of uncertainty and extreme to be considered that may have

impact on a decision or the costs of a process, probabilistic forecasts provide the necessary

information to an end-user to take a decision upon some objective uncertainty criteria.

Recommendation: When establishing or renewing a forecasting system, the question

should not be posed on advantages and disadvantages for deterministic or proba-

bilistic forecast solution, but rather whether a deterministic solution can fulfill the

objective of the application. Section 3.10 describes uncertainty forecasts and how to

select the appropriate probabilistic methodology for specific applications.

A thorough academic review about probabilistic methodologies can be found in the

References Material under Uncertainty Forecast Information in section5

3.9.1.4 Forecast horizons

The forecast horizons play a major role in the ability to plan using forecasts. Today, there are

5 types of forecast horizons applied in the power industry:

1. Minute-ahead forecasts or nowcasts (0-120min)

2. Hours-ahead forecasts (0-12 hours)

3. Day-ahead forecasts (0-48 hours)

4. Week-ahead forecasts (48-180 hours)

5. Seasonal forecasts (monthly or yearly)

The Minute-ahead forecasts are in literature also sometimes referred to as ultra-short term

forecasts or nowcasts and are mainly used in areas with high penetration and high complexity

in system operation or significant risk for high-speed shut down and extreme events. These

forecasts are either based on a statistical extrapolation of measurements or weather input

together with measurements generated on minute basis. The recommended practice depends

on the severity and costs of the target value. For situational awareness, a simple extrapolation
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of measurements may be sufficient. For extreme events (e.g. ramps, high-speed shut down)

the involvement of weather related forecasts in high time resolution is recommended.

Hours-ahead forecasts or sometimes referred to as short-term forecasts correct a day-

ahead forecast by using real-time measurements and extrapolate from local real-time obser-

vations an improved view of the current state and the next few hours.

There are different methods available from simple extrapolation of measurements to

advanced weather and distance- dependent algorithms. Its recommended to get details of a

short-term forecast methodology described by the vendors, as quality and usability can differ

strongly with availability of data, quality of measurement data etc.

If the target is e.g. ramp forecasting, system control, a very large fleet or quality issues

with measurement data not dealt with by the end-user, simple algorithms are often not capable

of providing a good enough picture of the next few hours.

The Day-ahead forecasts are widely-used forecasts for general system operation, trading

and short-term planning. Traditionally, they are based on a combination of weather models

and statistical models.

The Week-ahead forecasts, sometimes referred to as long-term forecasts, are usually

applied in cases where the focus is not on forecast accuracy, but on forecast skill, e.g. in

situations, where trends prevail over granularity. These forecasts are most valuable as a

blending of a number of different forecasts or from an ensemble predication system, where

the small-scale variability is reduced. If this is done, such forecasts can serve to reduce

reserve costs and generate more dynamic reserve allocation as well as auctions. The Sea-

sonal forecasts sometimes referred to as ultra-long-term forecasts, predict variations due to

seasonal and or climate variability. They may be derived based on climatology, correlation

to various climate indices and oscillatory phenomena, climate models, or a combination of

these methods. Ensemble methodologies are the most preferable method due to the inherent

uncertainty on such time frames. The most simple method is to analyze past measurements.

Recommendation: Key when choosing a methodology is to carefully analyze the

accuracy requirements of the task to solve. For trading of futures in a trading

environment a simple methodology may be sufficient. Tasks such as grid balancing,

grid infrastructure planning or long-term capacity planning however require more

advanced methodologies. It is recommended to choose the method according to the

need to capture quantities only (simple method) or capture also climatic extremes

(advanced method).

3.9.2 Vendor Capabilities

3.9.2.1 Experience and Reliability

Experience is a key element of a successful vendor and implementation of the forecasting

solution. It can usually be evaluated by the selected references that are provided and mea-
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sured by conducting interviews with customers of similar type or by asking for information

about the vendors background and experience with similar customers. If a vendor is new

to the market that may not be possible. In this case, staff resources and experience of the

key staff is usually indicating, whether the experience level for the minimum requirements is

given. Reliability is also connected to experience, as it implies the reliable implementation

and real-time operation of a forecasting service. It is an important aspect and may be derived

by requiring examples of similar projects and interviewing references. It can also save a

lot of work and resources in comparison to carrying out a trial, if reliability and experi-

ence with respect to e.g. complex IT infrastructure, security aspects, reliable delivery and

provision of support etc. are a more crucial aspect than specific statistical performance scores.

Recommendation: Ask vendors to describe their experience and provide references

and CV of key staff members.

3.9.2.2 Ability to maintain state-of-the-art performance

The previous section provided an overview of all of the considerations for the technical

aspects of forecast type and methodology. In order to assure that the forecast vendor can

maintain state-of-the-art performance it is recommended to verify, whether the provider

engages in ongoing method refinement/development and forecast improvement activities.

Recommendation: Evaluate by asking the vendor to provide information about

• research areas and engagement

• references to staff publications of e.g. their methodology, project reports

• references of participation in conferences/workshops

• percent of revenue reinvested into research and development

3.9.2.3 Performance incentive Schemes

A performance incentive scheme is the most effective way to ensure that a forecaster has

an incentive to improve forecasts over time and also allocates resources to it. By setting

up a performance incentive scheme, the client acknowledges that development requires

resources and vendors have not only an economic incentive to allocate resources for further

developments, but can also influence their reputation. Incentive schemes do not have to be

enormously high, but usually range between 10-30

Establishing a performance scheme What must be key to a performance incentive scheme

is that it reflects the importance of the forecast parameters that are incentivized for the client!

The evaluation of such forecast parameters should be selected according to:

1. the objective of the forecasting solution
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2. the use/application of the forecasts

3. the available input at forecast generation time

The objective (1) in this context is defined as the purpose of the forecast. For example,

if a forecast is used for system balance, an evaluation should contain a number of statistical

metrics and ensure that there is an understanding of the error sources that the forecaster can

improve on. A typical pitfall is to measure performance only with one standard metric, rather

than a framework of metrics reflecting the cost or loss of a forecast solution. For example,

if a mean absolute error (MAE) is chosen to evaluate the performance in system balance,

an asymmetry in price for forecast errors will not be taken into account. Also, if e.g. large

errors pose exponentially increasing costs, an average metric is unsuitable.

The use or application of forecasts (2) is defined in the context of where forecasts are

used in the organization and where these have impact and influence on internal performance

metrics or economic measures. For example, a wind power forecast that a trader uses for

trading the generation of a wind farm on a power market has two components: revenue

and imbalance costs. The revenue is defined by the market price for each time interval,

whereas the cost is defined by the error of the forecast, the individual decision that may have

been added to the forecast and the system balance price. When evaluating a forecast in its

application context, it is important to choose an evaluation that incentivizes the vendor to

tune the forecast to the application. A forecast that is optimized to avoid large errors may

create lower revenue. However, if income is evaluated rather than revenue, such a forecast

may be superior due to lower imbalance costs. On the other hand, if the end-user makes

changes to the forecast along the process chain, the forecast evaluation must stop, where it is

outside the forecast vendors influence.

The available input at forecast generation time (3) is most important when evaluat-

ing short-term forecasts that use real-time measurements. For example, if the forecast is

evaluated against a persistence forecast with corrected measurements rather than with the

measurements that were available at the time of forecast generation, the evaluation is to the

disadvantage of the forecaster. The same applies, if aspects that affect the forecast such as

curtailments, dispatch instructions, turbine availability, are not taken out of the evaluation or

are corrected.

Recommendation: When incentivizing a forecast solution with a performance in-

centive, the evaluation need to consider the non-technical constraints in the forecast

and the parts that a forecaster does not have influence upon. A fair performance

incentive scheme needs to measures the performance of a forecast by blacklisting any

measurement data that is incorrect or corrupt, that contains curtailments, dispatch

instructions, reduced availability or other reductions outside of the forecasters influ-

ence. Evaluation against persistence forecasts also need to be done with the available

data at the time of forecast generation to not give advantage to persistence.
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Additionally, single standard statistical metric (e.g. MAE or RMSE) alone cannot be

recommended. More details on the purpose and interconnection of statistical metrics for

evaluation of incentive schemes can be found in part 3 of this recommended practice and

in the references under Evaluation and Metrics. Structure of a performance incentive pay-

ment The structure of performance incentive scheme is an individual process and contractual

matter between parties. When establishing the structure of a performance incentive it is

recommended to consider that by choosing a maximum and minimum, the maximum value

provides budget security to the end-user, also when e.g. changing from a very simple solu-

tion to an advanced one with much higher performance. The latter provides security to the

forecaster to ensure that the basic costs for generation of forecasts are covered. Adding a

sliding structure in between ensures the forecaster always has an incentive to improve, also

when it is foreseeable that the maximum may not be achievable.

Recommendation: it is recommended to apply a maximum incentive payment and a

maximum penalty or minimum incentive. A sliding change is preferable over for a

boolean (yes|no) decision for incentive payments, as it always encourages forecast

improvement efforts.

3.9.3 Evaluation of services

The recommended practice in any evaluation is to consider a number of factors that contribute

to the value that a user will obtain from a forecast service. It is not possible to provide a

complete list of factors to consider. However, the most important factors that should be

addressed are the following elements:

• Price versus value and quality

• Forecast Performance

• Solution Characteristics

• Speed of delivery

• Support structure

• Redundancy structure

The issues associated with each of these aspects will be addressed in the following

subsections in more detail.

3.9.3.1 Price versus Value and Quality

The value of a forecast may or may not be directly measurable. In most cases however, the

value can be defined for example in terms of cost savings or obligations and in that way
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provide an indication of the expected value from a certain solution. Prices are difficult to

evaluate. A low price often indicates that not all requirements may be fulfilled in operation

or not all contractual items are accepted and left to the negotiations. For these reasons, care

has to be taken in the evaluation process. Some services and methods are more expensive

than others on e.g. computational efforts, required licenses, database requirements, reliabil-

ity, etc. Unless prices are driven by competition in a overheated market, a service price is

normally coupled to the requirements and acceptance of contractual items. Some items such

as reliability, customer support or system recovery can have high prices, but can always be

negotiated to a different level. In an RFP end-users need to be aware of the relation between

cost, value and associated service level to prevent vendors from speculation on negotiable

item in the requirement list.

Recommendation: Following a decade of experience in the forecasting industry, the

recommended practice on price evaluation is to connect technical and contractual

aspects to the price and consider to let vendors detail contractual aspects that may

be associate with high service costs separately, especially, if a fixed cost price is

requested. An example could be the requirement of full system recovery within 2 hours

in a 24/7/365 environment. If there is no penalty associated, a vendor may ignore this

requirement, which may result in a much lower price. Requesting transparent pricing

eases evaluation and makes sure that speculations regarding negotiable aspects of a

service can be clearly compared.

3.9.3.2 Forecast Performance

Forecast performance evaluation should contain a number of metrics that are representative

for the need to the forecast user. It is recommended to establish an evaluation framework for

the performance evaluation. How to establish such a framework is dealt with in Part 3 of this

recommended practice guideline.

3.9.3.3 Solution Characteristics

The solution characteristics of a forecast service also contains much value for an end-user

and should get attention in the evaluation. It can be defined in terms of the available

graphical tools, ease of IT services for retrieving data or exchanging data in real-time as well

as historical data, customer support setup and staff resources connected to the forecasting

solution. This can be key for the operational staff to accept and be comfortable with a

forecast service as well as having confidence in the service. Additional work that may be

connected, but outside the scope of the operational service can also be key elements for a

well functioning service. Recommendation: Ask the vendor to describe how the system will

be built up, how communication and support is envisaged and let them provide examples of

graphics (if applicable).
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3.9.3.4 Support Structure

Customer service is often under-estimated and in most cases second to an accuracy metric

when selecting a vendor. Support can be a costly oversight if, for example, costs are related to

a continuously running system or extreme events, where the user needs an effective warning

system and related customer service. Support can have a relatively large cost in a service

contract and may provide a false impression on service prices, if, for example support is only

offered at business hours.

Key elements for the customer support is:

• the responsiveness of the provider, when issues arise

• live support in critical situations

A support structure and its management for operational processes additionally need to

bind the following strategic areas together:

1. Customer Support

2. Operations Software and Service

3. IT Infrastructure

The customer support (a) should be handled by a support platform, ideally with different

forms for contact, e.g. telephone hotline and email ticket system.

Any end-user needs to ensure that third-party software used in the operational environ-

ment (b) is licensed and renewed and maintained according to the licensing partys recom-

mendations.

The IT infrastructure (c) should ideally be ISO 9001 and ISO 27001 certified in cases,

where real-time operation and security is of paramount importance.

Recommendation: Definition of the required support structure should be part of

the requirement list for any forecasting solution. For real-time forecasting solutions

end-user need to ensure that there is an appropriate support structure in place. Con-

siderations of the real-time environment, own resources and which of the forecasting

business practices are of significance to the user should be carried out. Especially,

where processes are supposed to run every day in the year.

3.9.3.5 Redundancy Structure

Redundancy depends very much on the end-users needs to maintain a frictionless and con-

tinuous operation. Forecasting is mostly carried out in real-time, which has an inherit

requirement of being functional all the time. While there are many processes and targets
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for forecasting that may not require large redundancy and permanent up-time, the following

recommendation is targeted to those end-users where forecasting is to some extend mission

critical. There are a number of different redundancy levels that need consideration and that

can be achieved in various ways:

1. Physical delivery of the service IT infrastructure

2. Content of the delivery – Forecasting methods

The delivery of the service (1) is connected to the IT infrastructure. Redundancy measures

may be a combination of any of these:

• Delivery from multiple locations to mitigate connectivity failures

• Delivery from multiple hardware/servers to mitigate individual server failure

• Delivery with redundant firewalls to mitigate hardware failure

• Delivery through a ISP using Email, etc.

The redundancy of the forecast content is equally important as the physical delivery of the

data, but often neglected. It is recommended to consider any combination of the following

redundancy measures for correct forecast content:

• redundant providers of weather input

• redundant/multiple providers of forecast service

• redundant input and mitigation strategy for weather models

• redundant input and mitigation strategy to power conversion models

Recommendation: Define the required redundancy level according to the importance

of a permanent functioning service and the impact of delivery failure to other internal

critical processes.

3.9.3.6 Escalation Structure

It is recommended for high-level contracts, where forecasting is critical to the end-users

processes to get information about escalation structures in case of failure. This is especially

important when employing only one forecast provider. Recommendation: An end-user needs

to have a description about structure and corresponding responsibilities for their operations

staff in order to incorporate such information into own escalation structures in case of

emergencies.

Each level of escalation ideally contains the following structured process:
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Table 3.1: Recommendation of a three tier escalation structure.

Escalation Level Forecast service provider End-user

coordination coordination

Level 1:failure to Technical Staff Operations Staff

deliver service Project manager

Level 2: failure to recover Project manager Project/Department

or implement service manager

Level 3: failure to solve General General

failure/recovery management management

• Formulation of the problem/failure

• Root cause analysis

• Coordination of action plan for troubleshooting inclusive responsibilities

• Coordinated action plan progression

• Escalation to the next level or closure of escalation procedure

3.10 Forecast Methodology Selection for use of Probabilistic Fore-

casts

Currently, used methodologies of generating probabilistic uncertainty forecasts for the power

industry have proven concepts and are integrated in today’s business practices. Looking into

these applications, it becomes apparent that uncertainty forecasts have found their place in

the power industry, but are on the other hand far from being exploited to a level that could be

expected and may be necessary in the future, considering the value that uncertainty forecasts

already today can provide to many processes and applications.

The following definitions and recommendations aim to assist in the implementation of

uncertainty or more general probabilistic forecast methods into operational processes. While

this guide aims to be comprehensive, it is not possible to provide all details that may be

necessary for a first time implementation or planning of a fully integrated probabilistic fore-

cast solution. Nevertheless, the information provided is taken from existing documentation,

partially coordinated by the IEA Wind Task 36, but also general publications. This informa-

tion can be found in in the References Material under Uncertainty Forecast Information 5,

especially the reviews on probabilistic methods for the power industry [Bessa_2017] and on

uncovering wind power forecasting uncertainty origins and development through the whole

modelling chain [yan2021].
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3.10.1 Definitions of Uncertainty

In order to establish a common language of uncertainty forecasts, the most common defini-

tions of uncertainty are explained. These are:

1. forecast error spread:

the historically observed deviation of a forecast to its corresponding observation at a

specific time. It can also refer to an average error provided by an error metric, e.g.

variance or standard deviation.

2. confidence interval:

A confidence interval displays the probability that an observed value will fall between

a pair of forecast values around the mean. Confidence intervals measure the degree

of uncertainty or certainty in a sampling method, not the forecast 1. They are often

constructed using confidence levels of 5%, 95% etc.

3. forecast uncertainty:

is defined as a possible range of forecast values in the future. In meteorology this

range is defined by the uncertainty of the atmospheric development in the future and

represented in ensemble forecasts by applying perturbations to initial and boundary

conditions and expressing model physics differences.

4. forecast interval:

determined uncertainty band representing forecast uncertainty and containing the

respective probability of the real value being contained in the range of forecasted

values, which will only be observed in the future.

Forecast intervals are the most common used visualisation for forecast uncertainty. They

can be derived from

(a) parametric (e.g. Gaussian distribution)

(b) non-parametric (e.g. empirical distribution functions, kernel density estimation) rep-

resentations of uncertainty

(c) a larger number of NWP forecasts in an ensemble forecasting system that represent the

forecast uncertainty of the target variable

From these probability density functions (PDFs), quantiles or percentiles2 can be ex-

tracted and higher-order statistics such as skewness and kurtosis can be calculated. This

1One of the common misunderstandings is that a confidence interval is showing the uncertainty of a forecast.

This is not the case. By adding and subtracting for example one standard deviation to the deterministic forecast

of wind speed and converting it to wind power, such intervals represent a measure of the deviation to climatology

and do not represent current or geographically distributed uncertainty.

2In statistics and the theory of probability, quantiles are cut points dividing the range of a probability

distribution into contiguous intervals with equal probabilities. The 100-quantiles are called percentiles.
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is where the distinction is most pronounced: from a statistical error measure like standard

deviation, it is not possible to derive quantiles or percentiles.

For applications like reserve predictions, ramp constraints or optimization tasks for

storage applications, this distinction is imperative. Such applications also require that the

geographical distribution of the variables are captured by scenarios of ensembles of possible

outcomes of a pre-defined value.

3.10.2 Uncertainty Forecasting Methods

Forecast uncertainty for application in the power industry are today based on three main

processes and procedures (fig. 3.2):

1. Statistical methods of probabilistic forecasts:

This method is based on statistical processing of past (historic) data in order to derive

a probability density function of the possible forecasting spread. The advantage of

such methods are that they are computationally extremely cheap and simple to apply.

The disadvantage is that none of these methods produce a realistic representation of

the forecast uncertainty in a spatial and temporal manner. There is also no physical de-

pendency on the forward results, as the spread is based on past climatology. Typically,

statistical learning algorithms (e.g., neural networks, machine learning) are used to fit

historical time series of weather parameters from a NWP model to their corresponding

power generation data. From the fitting process, a PDF can be derived and used forward

in time. A newer, more intelligent method is the analogue ensemble method (AnEn)

that searches through historical forecasts for those past events that are most similar or

“analogous” to the current forecast. The observations with the best fit form the prob-

ability distribution of the forecast uncertainty. So far the method is one-dimensional

and hence does not take geographical or temporal aspects of uncertainty into account.

To be able to benefit from integration of information from geographically distributed

time series or from a grid of NWP the methods needs to add a second dimension. This

is in the focus of some recent research [spirati2017], where each grid point in an area,

where wind farms are located, is treated independently, using meteorological analysis

instead of observations.

2. Statistically-based ensemble scenarios:

With this method statistically-based scenarios are produced that are a result of statis-

tical generation of scenarios from the probability distributions produced by statistical

models based on the copula theory. We define them as scenarios, as the further process-

ing of the approach contains x independent results in contrast to the statistical method,

producing a PDF function. Such scenarios are quite similar to the third methods, the

physically-based ensembles. However, the uncertainty representation of the statistical

scenarios today only capture the spatial variability of the forecast, like ramps. We

therefore distinguish them here as scenarios rather then ensembles. Outliers that indi-

cate extreme events, for example above cut-out wind speeds of wind turbines can only
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be detected with probability characterisation and require an extreme event analysis.

This is due to the conversion to power taking place in the first step of the statistical

training in the same way as for deterministic forecasts. Extremes in wind power are in

that way difficult to detect, because the flat part of the power curve prevents extremes

that would be visible in the wind speeds to show up in the power scenarios. The

clear advantage of the statistically based scenarios is that they are computationally

much cheaper than physical ensembles as they are built from a deterministic weather

forecast. They also generate a much more realistic uncertainty representation than the

pure statistical approach, while only being slightly more computationally costly.

3. Physically based ensemble forecasts:

The third type of methodologies, the “physically based ensembles” can be considered

a post-processing of a set of NWP ensemble members, which are a set of NWP

forecasts produced by perturbing the initial or boundary conditions and/or model

physics perturbation, the result from different parameterisation schemes of one NWP

model “multi-scheme” approach) or complete different NWP models “multi model”

approach), converted in a subsequent phase into power with a curve fitting method

(see e.g. [bessa2017]). The NWP ensemble is configured to represent the physical

uncertainty of the weather ahead of time rather than uncertainty as a function of past

experience. In practice, this means that the NWP ensembles, especially the multi-

scheme approach, are event driven, produce outliers and also catch extremes, even

those with a return periods of 50 years. This is a clear distinction from statistical

methods, because even long time-series of historic data contain too few extreme events

to have impact in the learning algorithms. Often ensemble prediction systems (EPS)

are found “under-dispersive”, i.e. the uncertainty spread does not cover or represent

the uncertainty of the target variables. This can have many reasons, some often found

reasons being that:

(a) the ensemble is not targeted to the variable of interest of the end-user

(b) the time or spatial resolution is too coarse to capture the small scale phenomena

of the target variable

(c) insufficient information is extracted or used in the conversion to wind power to

represent a realistic uncertainty. Mostly such deficiencies can be mitigated by

calibration methods ((see e.g. [bessa2017]).
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Figure 3.2: Standard methods of uncertainty forecast generation to be used in wind power and PV forecasting.

The black arrows indicate whether the so-called ensemble members stem from a statistical procedure or are

individual scenarios.

Recommendation: when selecting a forecast method for a specific application, it is

important to know, whether or not a specific method is suitable for the application or

not. There are 3 major branches of uncertainty generating forecasting methods:

1. Statistical methods of probabilistic forecasts

2. Statistically-based ensemble scenarios

3. Physically based ensemble forecasts

We have provided some basic guidance and a graph (fig. 3.2) summarising these

methods in order to differentiate between the methods, showed the spatial and tem-

poral dependencies of some methods and emphasised that the statistical methods are

not suitable for applications that have such dependencies to the uncertainty measure

of interest. These are e.g. applications that deal with extremes that may not happen

frequently or where the uncertainty estimate is required in each hour of the forecasts

rather than over a forecast period of a day or a week.

More information about probabilistic methodologies can be found in the References

Material under Uncertainty Forecast Information, especially in a review on proba-

bilistic methods for the power industry [bessa].
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3.10.3 Applications of Uncertainty Forecasts in the Energy Industry

Typical applications in the energy industry, where it is recommended to use uncertainty

forecasts, are:

1. Balancing/trading of wind/solar power:

For balancing and trading applications the optimal bid/schedule, from the expected

value decision paradigm, consists in a quantile calculated from the forecasted imbal-

ance costs [bremnes2004probabilistic] or a percentile calculated from an ensemble

forecasting system [moehrlen2012a, moehrlen2012b]. The calibration of uncertainty

is a critical requirement for the end-user and has a non-marginal economic impact.

Moreover, in electricity markets with high integration levels of wind/solar power, the

combination of extreme forecast errors and high imbalance prices is critical and de-

mands for risk modelling techniques and uncertainty forecasts with high accuracy in

detecting extreme events (e.g., cut-out wind speed, ramps) ([bessa2017]). If the portfo-

lio includes also energy storage units, the temporal dependency of forecast uncertainty

is a primary requirement [Haessig2015]. For this use case, the end-user should request

ensemble forecasts from physically based methods (see 3.10.2).

2. Dynamic reserve and ramping reserve requirements:

The use of uncertainty forecasts for setting the power system reserve requirements

is probably the most well-accepted business case for the energy industry. A critical

requirement is minimum deviation from perfect calibration to avoid under- and over-

estimation of the risk (i.e., loss of load probability, probability of curtailing renewable

energy) [Bessa2012a]. Another criteria in the design of dynamic reserve allocation are

the boundaries that need to be defined. The following aspects are crucial boundaries

in this respect:

• Use the correct type of ensemble data input

Physical NWP ensemble: e.g. multi-scheme approach

Deterministic reserves do not provide uncertainty

It is the weather uncertainty that generates the errors

• Clear definition of the forecast objective

Which types of errors are critical

How to handle outliers

What type of reserve fits to the end-users objective:

typical scenarios are: static, security or dynamic/economic

• Definition of the time scales that needs to be forecasted

Required ramping capabilities
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• Forecast uncertainty required for all weather dependent sources & sinks

The uncertainty term should ideally be built upon load+wind+solar

• Definition of a noise term to handle the non-local imbalances

imbalances from interconnections (small system <-> large system)

Allocating reserve dynamically requires probabilistic forecasts and the value for the

system operator is well defined. Yet, the following challenges also need to be ad-

dressed, when implementing probabilistic forecasts for dynamic reserve requirements

and allocation:

(i) communication and visualisation of forecast uncertainty and extreme events in

TSO dispatch centers

(ii) training of human operators to understand and exploit the probabilistic in-

formation, i.e. move from a deterministic/ real-time paradigm to probabilis-

tic/predictive operation paradigm.

An example of a dynamic reserve visualisation tool is illustrated and described in

Appendix C.

3. Extreme event warning such as High-Speed shut down warnings:

For risk indices, it is imperative that there exists a well-justified and transparent

underlying computation of the conditions that may lead to a shut-down event impacting

system security, that should be provided rather early than late. It is generally accepted

that a planned scheduled shut-down at a slightly lower wind speed extend the lifetime

of the gearbox system in wind turbines. Therefore, one could argue that there is modest

economic loss by executing controlled shutdowns to reduce the ramp-rate in a power

system.

The value of such alert systems is gained with early detection of extreme events. This

can for example be accomplished by introducing a gradual artificial transition from

full load to no generation already at 22.5m/s. The starting point of such an index will

be discussed below. A simple argument for 22.5m/s is that 2m/s is the typical forecast

accuracy at such high wind speeds.

A “high-speed wind event” can be defined as active, if the hub height wind speed is

above 24.5m/s, while there is no event, if the wind speed is below 22.5m/s. Table 3.2

shows how such an index may be defined.

The required low level forecast information to raise alerts can be generated in a typical

6-hourly cycle, although it may be coupled with a short-term forecast on a shorter

frequency dependent on the importance of critical ramps for system security. One of

the major challenges for such an alarm system is in fact the strategy of dissemination of

the warning information to the user in the control room. If a critical event is discovered

about 5 days in advance, the question is how often a warning should be issued, also
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Table 3.2: Definitions of a high-speed shut down index for a control area with a high penetration level of wind

power and a wind resource with a high variability and wind speeds often exceeding 25m/s.

wind speed in 100m index value

0 - 22.5 m/s 0.00%

22.5 - 24.5 m/s 0 -> 100%

24.5 m/s 100.00%

in order to avoid too many false alarms or forecast misses. Threshold values for alert

generation therefore has to be a function of lead time, time of the day and week day.

The more alerts there are generated, the less serious they are taken and the higher the

likelihood that a critical event is overlooked. Nevertheless, there are periods where

events should create alertness, even though they may not result in a sufficient strong

concurrent shutdown. Typical examples could be:

• An alert at a 6 day horizon issued on a Thursday valid for Tuesday morning

following a long holiday weekend may be desirable even if the likelihood is low.

• An alert to cause attention on a change of expected ramp rate 6 hours ahead,

even though there has already been raised an alert for the event from previous

forecasts

The objective for such an alert must always be to avoid costly actions to be initiated, if

there is a critical ramp rate in the forecast far enough away that an economic solution

can be prepared.

As briefly discussed below under situational awareness, if a major fraction of the

power generation is wind dependent, it would be considered best practice, if the

operator is aware of the risk of high-speed shutdown, even if the likelihood is low, but

still justifiable. The same applies to the ramp rate caused by a fast moving low pressure

system, where the center wind speeds may be below the cut-in level. Both event types

can simultaneously amplify the ramp down rate and call therefore for a ramp rate based

consideration instead of an isolated high-speed shutdown consideration.

4. Situational awareness:

For system operators, but also wind farm operators or trader, information from uncer-

tainty forecasts can be integrated at two levels:

(a) Visualization and cognition: provision of alarms and early warnings to human

operators about predefined events with impact in the frequency control tasks, e.g.

large ramps, wind turbines tripping, large forecast errors. With this information,
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the human operator can use his/her experience or operating practice to derive a set

of control actions (e.g., change current dispatch, activate reserve) that mitigate the

effects of renewable energy uncertainty and variability in the system’s frequency.

(b) Technical evaluation of network constraints: uncertainty forecasts can be inte-

grated in a power flow module, available in commercial energy management

systems (EMS), to detect voltage and congestion problems with a certain prob-

ability threshold [Usaola2009]. With this information the human operator can

plan preventive actions in advance, e.g. change the market dispatch, define a

cape for market offers in a specific network area/node.

The following requirements should be requested by the end-user for the forecasting

provider:

(a) high accuracy in detecting extreme events related to RES uncertainty and vari-

ability

(b) capacity to capture the temporal and spatial dependency of forecast errors

5. Flexibility management in smart power grids:

The deployment of smart grid technology enables the control of distributed energy

resources (DER), e.g. storage and demand response, which flexibility can contribute

to increase the RES hosting capacity while maintaining the standard quality of supply

levels. The combination of forecasting systems and optimal power flow tools can

be used by transmissions and distribution system operators to pre-book flexibility for

the next hours in order to handle the technical constraints of their electrical network

[Soares2017].

Presently, distribution system operators are starting to explore RES forecasts in the

following use cases: a) forecast grid operating conditions for the next hours; b)

improved scheduling and technical assessment of transformer maintenance plans; c)

contract and activate flexibility from DER to solve technical problems.

In all these cases, a primary requirement is the need to have a spatial-temporal rep-

resentation of forecast uncertainty, where the temporal component is only relevant, if

inter-temporal constraints are required (e.g., operation of storage devices, control of

capacitor banks and on load tap changers).

Finally, a current topic of interest is the coordination between the transmission and

distribution systems. Different frameworks for information management and exchange

are under discussion [Jong2016]. It is clear that uncertainty forecasts can be used to

provide future information about nodal consumption/injection in the interface between

the two networks. For example, the FP7 European Project evolvDSO developed the

concept of flexibility maps, where RES forecasts are used to quantify the operating

point and flexibility range in the TSO-DSO interface [Silva2017]. This paves the

way to combine information about forecast uncertainty and flexibility, as proposed in

[Bucher2015].
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Recommendation:

The transition of the energy systems towards a 𝐶𝑂2-free power generation with large-

scale integration of renewables on a global basis also requires a restructuring of

the power system operation processes. The intermittened generating units driven by

wind and solar resources call for a more dynamic and weather driven structure of

the operating practice. Probabilistic forecasts can suuport that dynamic structure and

provide the possibility to deal with the uncertainties associated with the non-linearities

of weather deveoplment as well as extremes that can affect the power system and cause

large-scale blackout.

No forecasting solution today should be designed without the uncertainty of weather

driven energy resources in mind. The minimum integration of uncertainty forecsats

today are for the following application types:

1. Balancing/trading of wind/solar power

2. Dynamic reserve and ramping reserve requirements

3. Extreme event warning such as High-Speed shut down warnings

4. Situational awareness

5. Flexibility management in smart power grids

The basics of these methodologies have been described in this section. Detailed

implementation information about the described probabilistic methodologies can be

found in the References Material under Uncertainty Forecast Information, especially

in a review on probabilistic methods for the power industry [bessa2017, Wuerth2019,

Haupt2020, yan2021].

3.10.4 Visualisation of forecast uncertainty

The visualisation of uncertainty forecasts has shown to be a difficult topic, especially for

the not so experienced user. While an expert immediately can see the difference between a

chart generated with a statistical approach and an ensemble approach as defined in section

3.10.2, it can be difficult for a beginner. The descriptions of Fan charts and usefulness of

the so-called spaghetti plots has the purpose of providing a general overview and assist in

distinguishing of various methods for the graphical visualisation of uncertainty forecasts.

1. “FAN CHART”

The “fan chart” is a common way of visualising a set of forecast intervals that are

aggregated in one plot. Visualizations as shown in Figure 3.3 may however provide

misleading information to a decision-maker. For example, if the decision-maker
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interprets each one of the quantiles as a possible evolution of wind power production

in time, he needs to be sure that the visualization tool uses the data that he expects to

interpret the information correct.
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Figure 3.3: Example of a “Fan chart” of wind power production at a single wind farm built marginal forecast

intervals of a statistical method.

Differentiation of forecast methods used in the fan chart:

• statitical method:

A fan chart generated with a statistical method visualizes the “marginal forecast

interval”, meaning each interval is only confined to separated forecast lead-times

and does not have information about the joint probability distribution across the

full set of lead times, or in other words, these intervals are not modeling the

inter-temporal dependency structure of forecast uncertainty. These intervals are

different for each lead-time. Figure 3.3 shows an example of a fan chart where

the intervals were generated with a statistical model. The lead-time dependence

is visible through the relatively equal intervals in size over the entire forecast.

The observations (black solid line) are covered, except for a short period around

midnight of the first day.

In that hour there is a probability of around 𝛼 = 90% (limited by quantiles

95% and 5%) that the observed value is within approximately 𝑃𝜏
𝐿

𝑡+𝑘
= 0.18 and

𝑃𝜏
𝐻

𝑡+𝑘
= 0.65. This is the typical interpretation. Looking at the observations,

another way to interpret is that there is a 5% likelihood that the observations are

within 𝑃𝜏
𝐿

𝑡+𝑘
= 0.63 and 𝑃𝜏

𝐻

𝑡+𝑘
= 0.65.

2. Ensemble Method:

In Figure 3.4 we also see forecast intervals for the same wind farm and day. This time,

the intervals were formed of 300 wind speeds in 4 different heights by a 75 member
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Figure 3.4: Example of a “Fan chart” of wind power forecasts at the same time and wind farm as in 3.3, built by

a 75 member multi-scheme NWP ensemble system (MSEPS).

multi-scheme NWP based ensemble prediction system (MSEPS). These intervals look

very different from the statistically generated intervals. Even though the 90% prob-

ability is within approximately 𝑃𝜏
𝐿

𝑡+𝑘
= 0.21 and 𝑃𝜏

𝐻

𝑡+𝑘
= 0.75, the 5% probability that

the observations is found within the upper quantile has an interval size of 0.25 (range

𝑃𝜏
𝐿

𝑡+𝑘
= 0.50 and 𝑃𝜏

𝐻

𝑡+𝑘
= 0.75). That means the interval size is larger by a factor of

10. Compared to the statistical method, this result indicates that the current weather

development contains a low probability for a high uncertainty range towards increased

production.

Especially the physical based multi-scheme approach that provides the uncertainty

in each time step quantifies the uncertainty with the knowledge of now and different

physical approaches to compute the future development, rather than comparing the

situation with past data.

Any application that may be subject to extreme events that may not have happened

within the last months or years, should use uncertainty forecasts from this mthod and

make sure that this is reflected in the visualisation of the forecasts.

3. “Spaghetti Plot”

Figure 3.5 shows the same wind farm, forecast days and method as in Figure 3.4, but

as individual forecasts in a so-called spaghetti-plot where each of the 300 wind power

forecasts are one line. In this way, it becomes apparent, how individual ensemble

forecast “members” generated outliers.

In comparison to the lead-time dependent approach, the physical approach forms a

large outer quantile band and a more condensed inner part, indicating that many of

the 75 forecasts are aligned in their atmospheric development, while there are a small

number of forecasts that result in higher power generation. The difference here is that
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Figure 3.5: Example of a spaghetti plot of 300 wind power forecasts at the same time and wind farm and method

as in 3.4.

the intervals are a result of the NWP ensembles reproducing the physical uncertainty

of the current atmospheric processes that generate the power and are fully independent

of the lead-time. Here, a large spread can be generated based on a very low likelihood

or probability, also if such events have not been observed before.

An operator or trader has a number of ways to interpret such a forecast. Two likely

scenarios could be:

(a) ignoring the outer interval and acting upon the highest probability ranges

(b) verifying the system upon issues or the market price that could arise, if the low

probability of high generation would become reality

Whether the operator or trader acts upon such a forecast depends on their business

practices. Nevertheless, it shows that the information contained in the forecast intervals

have a direct practical application.

Take-away from the Visualisation of Uncertainty:

The different results also illustrate that the successful interpretation of such informa-

tion depends on the algorithm used to generate these intervals and an understanding

of the methods with which such intervals have been created. The major difference here

is that one method is based on current atmospheric conditions (NWP ensemble) and

the other relies on historical documentation of the atmospheric conditions. Here, the

intervals of extremes are usually smaller and less pronounced unless there are long

time series available that contain a significant number of such extremes to impact the

spread in given weather conditions.
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DATA COMMUNICATION

Key Points

This section provides recommendations for forecast data-related terminology, data

description and data formats and exchange protocols

- The terminology section (4.1) provides definitions for terms commonly used

in the description and exchange of data between forecast providers and users

- The description section (4.2) provides a specification of the mandatory and

optional types of data required to train and operate a forecasting system

- The exchange section (4.3) provides recommended standards for data formats

and exchange protocols. The standards are presented for two levels of users:

Level 1: basic data format and data exchange for groups with limited IT

knowledge and/or experience

Level 2: more detailed description of more sophisticated formats and

exchange protocols that enable groups with more extensive IT knowl-

edge, experience and resources to achieve higher level of data exchange

robustness and efficiency.

Currently, there exists no best practices or standard for (1) definitions of the various

inputs that are used to configure and operate a renewable energy forecasting system, (2) data

formats and (3) data exchange protocols. Forecast suppliers and consumers use different

terminology and can end up spending many hours on unnecessary communication. This

is a problem which ultimately comes at a cost to the supplier, energy forecast purchaser

and overall cost of operating renewable energy projects. Similarly, there is no standard or

recommended best practice for the format of the data used by the forecasting systems and the

methods for delivering this data. This also creates additional delays and inefficiencies in the

45
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forecast setup process.

Two user groups are targeted in this recommendation that are referred to as Level 1 and

Level 2 users in this document:

Level 1 users: this group typically has limited IT resources or experience. Input

documents are geared towards manual input of forecast specifications.

Level 2 users: this user group will have a deeper IT knowledge or experience than Level

1 users. Input file format examples and exchange methods presented here may be program-

matically adopted for real-time use.

Once adherence to the data exchange standard is attained, the benefits are numerous and

tangible. For the supplier of renewable energy forecasts this is:

1. More efficient onboarding Level 1 consumers (i.e., with less experience using forecasts

or less IT expertise) standard templates are followed; for more advanced, Level 2 users,

the onboarding process can be mostly automated.

2. Back-and-forth communication time is minimised - Online references to standard docu-

mentation reduces communication blockages between forecast supplier and consumer.

3. Greater automation of adding/removing renewable power plants to forecast engine.

Adhering to a standard reduces (doesnt eliminate) the need for customised software

development

For the renewable energy forecast consumer, some benefits of adhering to the data

exchange interface include:

• A much more efficient process to benchmark different forecast providers

• Easier to add, remove, or switch forecast providers

• Quicker turnaround time in adding or removing forecast projects to asset portfolio

• No need to develop new processes for different weather-impacted renewable technolo-

gies

This recommended practice can be applied to other types of renewables. The focus of

this specification is forecasting of individual renewable projects. An aggregate or area-

level forecast is not specifically addressed in this document as these configurations are less

common. However, aggregations and area forecasts may be treated like a single project

or be specifically coded by a unique ID (e.g., Wind Region 01). Data field definitions are

also provided in the hopes of promoting a standard definition for these fields. However, we

recognise that there are many factors that make data definition standards more challenging

and beyond the scope of this recommendation. For example:
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• Industry-specific standards several industries are involved in the Renewable Energy

industry and each has its own data definitions for similar fields. This includes OEM

(turbine manufacturers), independent engineers (consultants), SCADA software com-

panies, renewable plant developers, utilities, and TSO or ISOs.

• Geographic location terminology and translation from one language to another.

Different standardisation bodies governing different industries also can present challenges,

but for renewable energy forecasting, the International Electrotechnical Commission (IEC)

is the generally accepted organisation that establishes, promotes, and updates data definition

standards.

4.1 Terminology

For clarification, several terms are defined that appear repeatedly in this section and therefore

are defined below.

Renewable Energy Forecast Customer/Consumer: an institution or corporation that

requires a forecast of power from a renewable energy generation facility with a look-ahead

time of minutes to days.

Renewable Energy Forecast Provider: an institution or corporation that delivers re-

newable energy forecasts with a look-ahead time of minutes to days. In most cases, the

provider is a company whos business includes selling forecasts to customer/consumer.

Renewable Energy Forecast Trial: an exercise conducted to test the features and quality

of a renewable energy forecast such as wind or solar power. This may include one or more

participants and is normally conducted by a private company for commercial purposes. A

trial is a subset of a Renewable Energy Forecast Benchmark.

Renewable Energy Forecast Benchmark: an exercise conducted to determine the features

and quality of a renewable energy forecast such as wind or solar power. The exercise is nor-

mally conducted by an institution or their agent and multiple participants including private

industry forecast providers or applied research academics.

Online measurements: These are observations used for tuning a renewable energy fore-

cast system and adjusting intra-day renewable energy forecasts. Measurements are usually

power or energy since that is the target variable of interest to the consumer. However, other

weather variables might be included with online measurements. Online measurements are

also referred to as real-time measurements and are transferred between forecast customer and

provider on a regular basis.

Offline measurement: These are observations used for tuning a renewable energy forecast

system. As opposed to online, offline observations are historical and dont directly impact

short term (< 12 hours) forecast horizons. Measurements are usually power or energy since

that is the target variable of interest to the consumer. Other weather variables might be used

for energy forecast training, especially for a newly operational renewable energy plant.
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4.2 Data Description

This standard interface is defined on two levels. Ideally renewable energy forecast customers

and renewable energy forecast providers should comply with both level 1 and level 2 of the

standard, but only complying with level 1 can also provide significant efficiency gains during

the setup of a forecasting system. The two levels are:

Level 1: A high-level description of the information and data required to carry out a success-

ful trial and operation of a specific forecast solution. This level of standardisation provides

a common terminology that will enable the renewable forecast customer to prepare and or-

ganise data facilitating an efficient system configuration process.

Level 2: A detailed specification of both the format and method, which should be used

to exchange data between the renewable forecasting provider and the renewable energy fore-

casting customer. This level of standardisation enables an efficient, repeatable and scalable

configuration process applicable to trials as well as operational forecast systems. Compli-

ance with level 2 facilitates renewable energy forecast customers to efficiently carry out

trials/benchmarks as well as enabling renewable energy forecast providers to participate in

trials/benchmarks efficiently and at low costs.

Online/real-time measurements are suited for both intraday and day-ahead forecasting whereas

offline measurements are best for day-ahead forecasting only.

Mandatory and optional data

The metadata tables and definitions below specify some data to be mandatory in order to

setup a meaningful forecasting system. Other data is considered optional as those data may

improve forecast accuracy, take into account a future operating state of the renewable energy

plant, or might be less common forecast consumer requirements. All renewable energy

forecast consumers should be able to provide the mandatory data and all forecast providers

should be able to process mandatory data, whereas optional data depends on specifics to each

forecast installation.

4.2.1 LEVEL 1 Data description

Table 4.1 provides an overview of the different data types required by a forecasting system.

This data needs to be available to the forecast provider for both training and operating a

forecasting system. Table 4.2 provides an overview of the different types of meta data, which

describes the attributes of the data types listed in Table 4.1. Tables 4.3 to Table 4.7 contain

the data field and definitions that a forecast solution will require configuring an operational

forecast.
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Table 4.1: List of the different types of input and output data needed in a forecast setup

Data Type of Data Description of the Type of Data

M
a
st

er
D

a
ta

Site information A specification/description of the site(s).

A description can contain one or more sites.

A site can be an aggregate of multiple sites.

All sites in the same description must have similar data

structure as specified in the associated meta data de-

scriptions.

If the data structures are not similar, then the sites need

to be split up into multiple Sites and multiple meta data

descriptions.

O
n
li
n
e

D
a
ta

Measurements Observational data from a site which will be used as in-

put for training models produced by the forecast system.

Future

Availability

The data about expected future availability of the site(s)

due to maintenance, curtailment or other planned sched-

ules. Used as input to the forecast.

Forecasts The output data (results) produced by the forecast sys-

tem.

It is important to note that Measurements data should be made available both as historical

data (also referred to as Offline Data) for training of models and as operational or real-time

data (also referred to as Online Data) for operational forecasting. If available, the forecast

customer should provide a minimum of 3 months of historical Measurements, but ideally 1-2

years of historical data to capture both seasonal and inter-annual variability.

Metadata, also referred to as Master Data, has a broad definition but generally refers

to information that describes the forecast configuration or the data itself. In most cases, it

should not change often. The different types of metadata needed for renewable energy forecast

include information about the sites, the measurements, and the forecast configuration. This

is detailed in Table 4.2 .

The metadata about the renewable energy site (or power plant) itself is often the first

information a forecast supplier will need to initially set up a forecast installation and is,

therefore, essential to be accurate and from the forecast consumer. Table 4.3 details the

renewable energy site metadata.
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Table 4.2: List of different types of meta data needed in a forecast setup

Type of meta data Description of the meta data

Site specification This is a description of the renewable energy power plant character-

istics. Most of the characteristics dont change often with time.

Measurement specifi-

cation

This is a description of the attributes of the observational data sent to

the forecasting system. Measurement meta data may be separated into

realtime (online) and historical (offline) measurements because these

can often be described differently or represent different parameters.

Forecast Time Series

specification

This is a description of the forecast system product which is the time

series output.

Scheduled Availability

specification

This is a description of the forecasted or scheduled availability at the

power plant.

Forecast system speci-

fication

A description of the necessary inputs and outputs that tells the fore-

casting system how to model the target forecast variable(s). This

includes forecast system and output attributes such as units, variables,

timing, and temporal resolution.

Table 4.3: Specification of the data required for describing a renewable energy site

Sites:

The sites description can contain data about one or more site(s). A site can be comprised of

an aggregate of sites or, in the case of wind, an aggregate of individual turbines. For each

site the following data needs to be filled out.

Description Mandatory /optional Wind/

PV/Both

Type Data

field

Plant Name

ID

Unique ID (name) used for identify-

ing the site(s)

Mandatory Both String

Generation

Type

Either Wind or Solar Mandatory Both String

Latitude Latitude coordinate of Plant Name in

decimal degrees.

Mandatory Both Float

Longitude Latitude coordinate of Plant Name in

decimal degrees.

Mandatory Both Float

Capacity Capacity of the site (often also re-

ferred to as the rated power of the

site) for which the forecast should not

exceed (kW)

Mandatory Both String

Hub height The average height of the wind tur-

bine hubs (meters)

Mandatory Wind Float
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Number of

turbines

Number of turbines that comprise

wind farm

Mandatory Wind Integer

Wind turbine

make and

model

Turbine manufacturer and model

name

Mandatory Wind String

Turbine

power curve*

Default power curve table of wind

speeds and corresponding power ca-

pacity factor. May be turbine man-

ufacturers specification. Normalized

by rated capacity in the range [0, 1]

Optional Wind Float

Solar Tech-

nology

Description of the PV technology.

Fixed-tilt, single axis or dual axis are

most common.

Mandatory PV String

Minimum

panel ori-

entation

angle

The minimum orientation angle of

the PV panels in degrees from north

(0 to 359, where east is 90ř and west

is 270ř). If the system is single axis

tracking or fixed tilt, then minimum

and maximum orientation should be

the same.

Mandatory PV Integer

Maximum

panel ori-

entation

angle

The maximum orientation angle of

the PV panels in degrees from north

(0 to 359, where east is 90ř and west

is 270ř). If the system is single axis

tracking or fixed tilt, then minimum

and maximum orientation should be

the same.

Mandatory PV Integer

Minimum

panel in-

clination

angle

The minimum angle of the PV pan-

els in degrees from horizontal (-90 -

+90). If the system is fixed tilt, then

minimum and maximum inclination

should be the same.

Mandatory PV Integer

Maximum

panel in-

clination

angle

The maximum angle of the PV pan-

els in degrees from horizontal (-90 -

+90). If the system is fixed tilt, then

minimum and maximum inclination

should be the same.

Mandatory PV Integer
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Panel tested

capacity

The total solar panel capacity for the

site (kW) based on standard test con-

ditions (1000W/m2) at panel temper-

ature of 25řC

Optional PV Float

Panel tem-

perature

sensitivity

The temperature sensitivity of the PV

panels (%/řC)

Optional PV Float

Inverter

capacity

The capacity (kW) of the inverters Optional PV Float

Inverter effi-

ciency

The inverter efficiency at 95% load Optional PV Float

* Turbine power curve table is often appended or delivered separately.

Measurement data for the forecast site is often provided prior to the configuration of the

forecast system to calibrate the forecast model and thus reduce forecast error. If the renewable

energy site has been in operations, then this would likely include power observations since

that is typically the target forecast variable. However, for new renewable energy sites, a

history of wind speed or irradiance is often provided to the forecast supplier which may help

reduce forecast error until a suitable history of power observations is obtained.

Table 4.4 details the specific fields that describe the measurement data required for

renewable energy forecast model training. This table should be filled out more than once if

the historical measurement data differs in any way from the online (realtime) data being sent

to the Forecast Provider. Differences may arise due to the type of observation (e.g., SCADA

power versus settlement power observations, wind speed from a met tower versus nacelle

anemometer average wind speed).
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Table 4.4: Specification of the data required for describing the forecast system input measurements

Measurements:

The Measurements should be delivered for each site and contain the information described

below. All values must be available with the same granularity, e.g. every 5 minutes and with

a fixed update frequency.

Data field Description Mandatory

/optional

Wind/

PV/Both

Type

TIME SERIES FIELDS

Plant Name

ID

Unique ID (name) used for identifying

the site(s)

Mandatory Both String

StartTime Date and time stamp indicating the start

of the period for which the measure-

ments are observed.

Mandatory Both String

EndTime Date and time stamp indicating the end

of the period for which the measure-

ments are observed.

Mandatory Both String

Power The power production (kW) when the

measurement was observed

Mandatory Both Float

Available ca-

pacity

The observed available capacity (kW)

of the site due to a reduction in avail-

able generators. If wind turbines, so-

lar panels or inverters are not available

(due to maintenance, break downs or

similar) the capacity of the site is tem-

porarily reduced.

Optional Both Float

Limitation

level

The limitation (kW) of the site due to

curtailment, set point level, do not ex-

ceed limitations or down regulation.

This includes non-scheduled changes

by grid operator.

Optional Both Float

Wind speed Wind speed (m/s) from a representa-

tive instrument. For example, a mean

of the turbine nacelles, a meteorolog-

ical tower anemometer or LIDAR in-

strument).

Optional Both Float

Wind direc-

tion

Wind direction measured in degrees

from north (0-359ř). East = 90ř,

South= 180ř, West = 270ř, North = 0ř.

Optional Wind Float

Temperature Air temperature (degrees Celsius) Optional Both Float



54 Chapter 4. DATA COMMUNICATION

Pressure Atmospheric air pressure (hectopas-

cals, hPa)

Optional Both Float

Relative Hu-

midity

Relative humidity of the air (%) Optional Both Float

Precipitation The amount of rain or snow that has

fallen on the ground (millimeters, mm)

Optional Both Float

Global Hori-

zontal Irradi-

ance

The total short-wave radiation from the

sky falling onto a horizontal surface

(W/m2)

Optional PV Float

Global tilted

irradiance

The total short-wave radiation from the

sky falling onto a tilted surface (W/m2)

Optional PV Float

Direct solar

irradiance

The short-wave radiation that has not

experienced scattering in the atmo-

sphere (W/m2). The radition comes

from the disc of the sun.

Optional PV Float

Diffuse irra-

diance

The short-wave radiation from light

scattered by the atmosphere excluding

from the disc of the sun (W/m2)

Optional PV Float

META DATA

Time zone The time zone of the timestamp in

IANA Time Zone (TZ) database for-

mat (e.g, Europe/Barcelona)

Mandatory Both String

Time interval

label

Describes what time the measurement

point represents. Can be instantaneous,

period beginning average (leading), or

period ending average (trailing)

Mandatory Both String

Power mea-

surement

type

This field is a text description of the

power measurement field. It can be,

for example: substation meter, SCADA

power, active power, potential power,

settlement power.

Optional Both String

Wind speed

measurement

type

Specify if the wind measurement for

the site is from turbine nacelle, average

of nacelle, met mast or other.

Optional Both String

Wind speed

measurement

height

The height of the wind speed measure-

ment in meters.

Optional Both Float

Most forecast suppliers have the ability to incorporate scheduled changes to the renewable

plants availability on the forecasted output. This comes in the form of reduced capacity owing
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to reduction in available units (e.g., turbines or inverters) or due to a generating limit of the

power plant (e.g., curtailment or transmission limit). ). The important distinction between an

outage and limitation is that an outage is a proportional reduction in the plants capacity for

all wind or solar irradiation conditions. The limitation is a maximum capped output (e.g., set

point) of the plant based on the available capacity. This information needs to be described as

it will routinely be sent from the forecast consumer to the forecast supplier. Table 4.5 details

this information.

Table 4.5: Specification of the data required for describing the future availability and curtailments

Scheduled Availability: Future availability and curtailments for each site, should contain

the information described below.

Data field Description Mandatory

/optional

Wind/

PV/Both

Type

Plant

Name ID

Unique ID (name) used for identifying

the site(s)

Mandatory Both String

StartTime Date and time stamp indicating the start

of the period for which the measure-

ments are observed.

Mandatory Both String

EndTime Date and time stamp indicating the end

of the period for which the measure-

ments are observed.

Mandatory Both String

Outage

level

The expected available capacity (kW)

of the site. If wind turbines, solar pan-

els or inverters are not available (due to

maintenance, break downs or similar)

the Capacity of the site is temporarily

reduced to available power capacity.

Optional Both Float

Limitation

level

The expected available capacity (kW)

of the site due to a limiting factor such

as curtailment, setpoint instruction from

grid operator or temporary limit on the

maximum allowable production.

Optional Both Float

Reason of

unavail-

ability

Editable text that gives a reason for

the reduction in available capacity (e.g.,

Maintenance, plant limitation). Often

entered by plant manager or remote op-

erations center.

Optional Both Float

The forecast deliverable is a point time series generated by the forecast software system.

This product has characteristics that will vary depending on the consumers needs. Table ??

contains a description of the forecast file metadata.
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Table 4.6: Forecast time series specification metadata

Forecast Time Series:

The attributes of the output forecast time series are described below.

Data field Description Mandatory

/optional

Wind/

PV/Both

Type

Plant name

ID

Unique ID (name) used for identifying

the site(s)

Mandatory Both String

StartTime Date and time indicating the begin-

ning of the forecast interval

Mandatory Both String

EndTime Date and time indicating the ending of

the forecast interval

Mandatory Both String

Power The power production forecast (kW)

for the period

Mandatory Both Float

Power quan-

tiles

Probabilistic power production fore-

cast corresponding to a specific quan-

tile level

Optional Both Float

Wind speed Wind speed forecast (m/s) Optional Both Float

Wind direc-

tion

Wind direction forecast in degrees

from north (0-359ř). East = 90ř,

South= 180ř, West = 270ř, North =

0ř.

Optional Wind Float

Temperature Air temperature forecast (degrees Cel-

sius)

Optional Both Float

Pressure Atmospheric air pressure forecast

(hectopascals, hPa)

Optional Both Float

Relative Hu-

midity

Relative humidity of the air forecast

(%)

Optional Both Float

Precipitation Forecast of the amount of rain or snow

that has fallen on the ground (millime-

ters, mm)

Optional Both Float

Global Hor-

izontal Irra-

diance

The forecast total short-wave radiation

from the sky falling onto a horizontal

surface (W/m2)

Optional PV Float

Global tilted

irradiance

The forecast total short-wave radiation

from the sky falling onto a tilted sur-

face (W/m2)

Optional PV Float
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Direct solar

irradiance

The forecast short-wave radiation that

has not experienced scattering in the

atmosphere (W/m2). The radition

comes from the disc of the sun.

Optional PV Float

Diffuse irra-

diance

The forecast short-wave radiation

from light scattered by the atmosphere

excluding from the disc of the sun

(W/m2)

Optional PV Float

Event Fore-

cast

Forecast value of the custom-defined

power forecast event (e.g., ramp rate

probability, %)

Optional Both Float

The forecast deliverable is the product of many configuration parameters within a forecast

software system. Not all forecast software systems have similar built-in features, but Table

4.7 highlight some of the salient details that are important to a forecast system specification

regardless of software system implementation details.
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Table 4.7: Specification of the data required for describing the Forecast System configuration

System specification:

This specification describes general aspects (meta data) of the forecast system

Data field Description Mandatory

/optional

Wind/

PV/Both

Type

Plant name

ID

Unique ID (name) used for identifying

the site(s)

Mandatory Both String

Power unit Unit of power quantities (MW, KWh) Mandatory Both String

Time zone The time zone of the timestamp in IANA

Time Zone database format (e.g, Eu-

rope/Barcelona)

Mandatory Both String

Daylight

Savings

Time flag

Flag to indicate whether daylight sav-

ings time applies to forecast file (True

or False)

Mandatory Both String

Time

stamp

format

Format of the date and time stamp (e.g.,

yyyy-MM-ddTHH:mm:ss).

Mandatory Both String

Forecast

interval

label

Describes what the time of forecast

point represents. Can be instantaneous,

period beginning average (leading), or

period ending average (trailing)

Mandatory Both String

Issue time

of

day

The time of day that a forecast is is-

sued specified in HH:MM format, e.g.

00:30. For forecast runs issued multiple

times within one day (e.g. hourly), this

specifies the first issue time of day.

Mandatory Both String

Forecast

update

frequency

Define how often the forecast time series

is updated (in minutes)

Mandatory Both Integer

Forecast

interval

length

The length of time (in minutes) each

forecast point represents

Mandatory Both Integer

Measure-

ment

delay

The expected time delay from when a

value is measured until it is available to

the forecasting system in minutes

Mandatory Both Integer

Forecast

maximum

horizon

Horizon (or maximum look-ahead) of

the forecast in hours

Mandatory Both Integer
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Forecast

quantiles

Quantile of the forecast distribution

given to the nearest integer. Specify

a single or list of quantiles (e.g., P10,

P25, P50, P75, P90, P99)

Optional Both String

Forecast

weather

variable

units

Units corresponding to weather forecast

variables

Optional Both String

Event fore-

cast

Name and description of custom fore-

cast variable

Optional Both String

Event fore-

cast units

Units of custom forecast event Both String

4.3 Data Format and Exchange

4.3.1 LEVEL 1 Data Format and Exchange

Two main considerations in recommending a suitable data format for Level 1 users of forecasts

is ease of use for the forecast client and, for the forecast provider, the ability to program-

matically read in the necessary metadata and time series input files. Comma Separate Value

(CSV) satisfies these conditions and is also an acceptable format for Level 2 users. While

Level 2 users can utilize high-level programming languages to generate and process CSV

files, Level 1 users can still interact with CSV format through Microsoft Excel or other

ascii-text editors. Another advantage of CSV for Level 1 users is that they can shift to

become a Level 2 users should experienced IT resources be procured. It can be done incre-

mentally by keeping the same CSV format or shifting to JSON or XML as is described below.

Level 1 users that have less IT experience or very limited IT resources on hand, it is

recommended that data transfer between forecast consumer and forecast provider be done

via SSH File Transfer Protocol (SFTP) which is a secure and reliable standard of sharing

data. Forecast providers typically will host an SFTP server and issue a unique login cre-

dential to the forecast consumer. The forecast consumer can choose among several SFTP

applications common in both the Windows and Linux operating system environments. The

SFTP application should have the functionality to create batch job configurations such that

online measurements can be automatically uploaded between forecast consumer and provider.

Command line SFTP works out-of-the-box with Linux operating system installations.

Software applications such as Filezilla that support SFTP can also be installed on a server

running Linux. Many file transfer applications built for Windows operating system have

SFTP functionality. This includes Filezilla and WinSCP.
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Most cloud storage commercial systems (e.g., OneDrive, GoogleDrive, Dropbox, AWS)

now include SFTP. As API’s become more user-friendly and accessible for people without

computer programming experience, this recommendation might have to be revised as REST

API (along with SFTP) are the Level 2 recommended data exchange method between forecast

provider and consumer.

4.3.2 LEVEL 2 - Data Format and Exchange

Level 2 data exchange is for both providers and consumers of renewable energy forecasts that

wish to programmatically exchange data. Thus, the most widely used and extensible tools

and formats were selected to allow for more seamless integration. The following three data

formats are the most commonly used in the exchange of renewable energy forecasting data

and the measurements that feed into forecasting systems:

1. CSV (Comma Separated Value)

2. JSON (JavaScript Object Notation)

3. XML (eXtensible Markup Language)

Each format comes with its own advantages and weaknesses, but all are in ascii, human-

readable form. Examples using representative data are useful for illustrating how metadata,

measurement, and forecast data are organized and may be copied as a template. CSV-format

files can be used for both Level 1 and Level 2 users as it has the distinct advantage of being

opened and converted in the widely-used Microsoft Excel application. However, for Level

2 users that want to automate processes or configure many forecasts, JSON and XML are

much more efficient formats.

Both JSON and XML formats are accompanied by a schema whose main purpose is to

enforce consistency and data validity. They also serve as human readable documentation for

the forecast system metadata, measurements, and forecast files.

Two widely used modes of data exchange are recommended in this best practice. They

are:

• Secure File Transfer Protocol (SFTP), and

• Application Programming Interface (API) that is RESTful

One of the main advantages of programmatically generating metadata and time series mea-

surement and forecast files is the wide number of applications that can be used to exchange

this data from forecast provider to forecast consumer and vice-versa. Many commonly used

programming languages such as Python, Javascript, R, and Ruby have packages and libraries

that make parsing and interacting with JSON and XML formats easier. Additionally, and
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often overlooked, is that internal applications can rely on the same data exchange methods

further standardizing code that has to be developed and maintained.

In recommending a data exchange standard, there are several important issues that have

been considered including:

• International support and usage

• Upfront, transitional and integration resource costs (financial, human)

• Extensibility

• IT Security

• Ease of use

International support and usage can not be overstated. If a method of data exchange

becomes obsolete or doesnt have a very large user base, it will not adapt to evolving com-

munication and security standards. Additionally, the number of people familiar with the

exchange method is smaller thus putting operational support of automated processes more at

risk in case of a disruption in data flows.

The upfront, transitional and integration costs all have to do with how much an or-

ganization must invest to build, transition, or support the methods of data transfer. If the

exchange method is open source and works across operating systems, this is a huge benefit

to the organization. If the data exchange methods can be integrated into existing software

(e.g., using a simple URL to make requests), this lowers the integration and development

costs. Transitional costs associated with adopting the standard or best practice will be a

key consideration on whether an organization chooses to incorporate a new data exchange

method. This touches upon all the important considerations listed above.

Extensibility is a key issue in choosing an exchange method as society goes through

an energy transition away from fossil fuels and towards an energy system with greater elec-

trification, distributed generation and load, and faster internet. Will what works today for

sending data back and forth be around in 10 years time? This is why we recommend not

one data exchange method, but two, since its difficult to predict how computers, electronic

devices and communications will change over time. RESTful APIs are quickly becoming

the international standard in data communications as it is not constrained to one format (like

SOAP is with XML) and doesnt have to be http-based although that is the primary protocol

in use today with RESTful APIs.

IT security is crucial in the energy industry as malicious malware usage and cyber attack

incidents have grown in number and scale every year. Both SFTP and RESTful API supports

secure standard protocols for data sharing. Secure shell in the case of SFTP and HTTPS
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using TLS encryption as one example in RESTful APIs. Although these protocols dont

eliminate security risks entirely, they reduce the risks of cyber attacks to your organization.

Both SFTP and RESTful APIs are supported by most software applications and are easy

to use since they can be invoked from the most commonly used scripting languages. Ease

of use may be the primary factor in deciding whether to adopt a new method to transfer data

for the purpose of renewable energy forecasting. A forecast provider can develop a web ap-

plication to accept any of the recommended formats. There are many tools and applications

which then allow the forecast consumer to verify or view the metadata, measurements and

forecasts in a web browser. A good example of this can be seen in the US Department of

Energy Solar Forecast Arbiter (SFA) project (Hansen et al., 2019). This project developed

an open-source RESTful API that uses JSON formatted messages. Forecast site metadata,

measurements, and forecast time series are exchanged through POST and GET commands.

Once the data is uploaded via the API, a dashboard has been built that allows the forecast

provider and consumer to visualize, download, and create verification reports.

Sample formatted template files and accompanying schema files will be made available

in CSV, JSON, and XML format for download accessible via the IEA Task 36 Work Package

3 website. This is currently under construction.



Chapter 5

FINAL AND CONCLUDING REMARKS

While every forecasting solution contains very individual processes and practices, there are

a number of areas that all forecasting solutions have in common. For any industry it is

important to establish standards and standardise practices in order to streamline processes,

but also ensure security of supply with a healthy competition structure.

This document is providing state of the art practices that have been carefully collected

by experts in the area and reviewed by professionals and experts in an appropriate number

of countries with significant experience in wind energy forecasting. The recommendations

are to encourage both end-users and forecast service providers to bring focus to areas of

practice that are common to all solutions. The document will be updated as the industry

moves towards new technologies and processes.

The key element of this recommended practice is to provide basic elements of decision

support and thereby encourage end-users to analyse their own situation and use this analysis

to design and request a forecasting solution that fits their own purpose rather than applying

a doing what everybody else is doing-strategy.

This document is also intended to serve forecast service providers new to the market or

those wanting to evolve to a new level of service and support as a guideline to state of the art

practices that should be incorporated into business practices.
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GLOSSARY AND ABBREVIATIONS

Ensemble Forecasting:

Ensemble forecasts are sets of different forecast scenarios, which provide an objective way

of evaluating the range of possibilities and probabilities in a (weather or weather related)

forecast.

Probabilistic Forecast:

General description of defining the uncertainty of a forecast with objective methods. These

can be ensemble forecasts, probability of exceedance forecasts, or other forms of measures

of uncertainty derived by statistical models.

Quantile:

A quantile is the value below which the observations/forecasts fall with a certain probability

when divided into equal-sized, adjacent, subgroups.

Quartile:

quantiles that divide the distribution into four equal parts.

Percentile:

Percentiles are quantiles where this probability is given as a percentage (0-100) rather than

a number between 0 and 1.

Decile:

Quantiles that divide a distribution into 10 equal parts.

Median:

the 2nd quantile, 50th percentile or 5th decile, i.e. the value, where the distribution has

equally many values above and below that value.
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Abbreviations

The following abbreviations are used in this document:

FSP Forecast service provider

NWP Numerical Weather Prediction

EPS Ensemble Prediction System

NDA Non-disclosure Agreement

RFI Request for Information

RFP Request for Proposals

TSO Transmission system operators

ISO Independent system operator



Appendix A

CLARIFICATION QUESTIONS FOR

FORECAST SOLUTIONS

In order to define the objectives and possible solutions for a forecasting system, it is rec-

ommended to follow an overall structure: 1. Describe your situation In this process, it is

imperative to describe exactly those processes, where you need forecasting in the future.

Here it is essential to get the different departments involved, especially the IT department.

The more accurate you can describe the situation you need to solve with forecasting (e.g.

which IT restrictions, limitations and methods for data exchange exist, current or future

challenges, etc.), the more straight forward it will be to (1) ask questions to the vendors

regarding forecasting methodology, but also (2) get clarity of the involved processes enabling

forecasting.

Ask Questions to the vendors

The questions to the vendors should be of technical character regarding forecast methodology,

but also on available data exchange methodologies, required input data for the models and

system support.

TYPICAL QUESTIONS FOR PART 1

• Processes: Which processes require forecasting

• Data

– How will the data flow internally be solved: data storage, data exchange, data

availability ?

– Which data do we collect that may assist the forecaster to improve accuracy
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• Data Formats:

– Which formats are required for applications, data exchange and storage ?

• Applications

– Who/which department will use the forecasts, are new applications required to

make use of the forecasts ?

• Education

– Is it required to train staff in how to use forecasts ?

• Policies

– Are there policies, political or legal restrictions to be aware of when exchanging

data with a forecaster ?

TYPICAL QUESTIONS FOR PART 2

The following are typical questions to get some overview of what is state-of-the-art in

forecasting for renewables and what products are available on the market for a specific

purpose.

• Describe the methodology you will use when generating forecast for (wind|solar|)

• How many years of experience do you have in this specific area or related areas

• Required data fields for the forecasting model for the trial

• Time scales and IT requirements for the data for the forecasting model

• Required data for vendor’s model, if adopted and used live

• Applicable charges for a trial with vendor

• Vendors forecast model forecast horizons
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TYPICAL RFI QUESTIONS PRIOR

TO OR IN AN RFP

• Methodology

– What unique services can you provide that may address our needs ?

– What input weather data is used

– What methodology is used for power generation for the long-term (>1 days ahead)

and short-term forecasting (0...24h).

– Can uncertainty forecasts or probability bands be provided ?1 If yes, which

methodology is being used.

– What are the minimum requirements for wind farm site data?

– Can a Graphical User Interface be provided to visualise forecasts ? If yes, please

describe it in detail (e.g. platform dependence, user management, in-house

installation or web-based).

• Service Level

– What kind of service level does the provider offer (ticket system, personal support,

call center, online support, etc.)

– What kind of service level is recommended for the specific service.

– Does the provider have outage recovery guarantee

• Contract and Pricing

– What are restrictions and preferences on the pricing structure of your service

(e.g. price per park, per MW, per parameter, per time increment)?

– What restrictions/preferences does the provider have in responding to RFPs ?

• Experience

73



74 Appendix B. TYPICAL RFI QUESTIONS PRIOR TO OR IN AN RFP

– Can the vendor provide minimum of 3 examples of your work that is applicable

to our needs (e.g. forecast accuracy, references, methodology)?

– Does the company have significant market shares in the market/area of business

– Additionally, can your company supply products or information that you consider

relevant for us when setting out an RFP ?



Appendix C

Application Examples for Use of Prob-

abilistic Uncertainty Forecasts

C.0.1 Example of the Graphical Visualization of an Operational Dynamic

Reserve Prediction System at a System Operator

Figure C.1 shows an example of the graphical visualization of an operational dynamic reserve

prediction system at a system operator, where operators requested to have various intervals

in order to evaluate which of the intervals was economically or from a system security aspect

the better choice in a given situation.

The reserve requirement is built with a NWP ensemble approach where the ensemble

spread is related and calibrated to the expected forecast error of wind power, demand and an

estimated cross-border exchange requirement. The mean of the computed reserve require-

ment is scaled to zero and the possible positive and negative requirement intervals are plotted

in form of 4 percentiles up and down, respectively.

The red circles indicate areas, where the requirements would have been higher than what

e.g. a P20-P80 interval would have covered, if this was the uncertainty range the operators

would have requested. It also illustrates why the operators wanted to be “aware” of such

outliers, even if they may not have pre-allocated according to the outer ranges or boundaries.

Figure C.1: Example of the graphical visualization an operational dynamic reserve prediction at a system

operator. The reserve requirement with the

C.0.2 High-Speed shut down warning system

In a typical area where high-speed shut down is a challenge for the grid security, the

development of low pressure systems are frequent and the variability of the wind resources are

relatively high. Thus, an alert system concerning high-speed shutdown of wind power must

be established based on probabilities computed from a probabilistic prediction system that
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can take the spatial and temporal scales into consideration in order to capture the temporal

evolution and spatial scale of such low pressure systems that contain wind speeds leading to

large scale shut-down of wind farms.

This can for example be provided by a physical approach based on a NWP ensemble

that ideally contains all extreme values inherent in the approach without the requirement

of statistical training. Alternative solutions may exist from statistical approaches (see ??

by employing an extreme event analysis to a statistical ensemble of type 2. This is due to

the requirement that such forecasts must be able to provide probabilities of extreme events,

where each “forecast member” provides a valid and consistent scenario of the event. The

probabilities need to be suitable solutions for a decision process. They can be computed for

very critical and less critical events, dependent on the end-users requirements.

Figure C.2: Example of a high-speed shut-down example, where within 5 days 2 extreme events showed up in

the risk index of the system (upper graph), showing the probability of occurrence in terms of probability ranges

as percentiles P10...P90 of a high speed-speed shutdown. The second graph shows the 5-day wind power forecast

inclusive uncertainty intervals as percentile bands P10...P90 and the observations (black dotted line). The red

circles indicate the time frame in which the alarms were relevant.

Figure C.2 shows an example of a real-time setup of such a high speed shut down warning

system. The example exhibits 2 events. The first graph shows the risk index in probability

space of a high-speed shutdown event to occur. The second graph shows the wind power

forecast with uncertainties inclusive the observations (black dotted line) of what happened.

From the upper graph, the operator can directly read out the following:

• Case 1 at 26. January:

- 10% probability of 50% shutdown

- 8% probability of 90% shutdown

- 90% probability of 5% shutdown

• Case 2 on 31. January:

- 10% probability of 50% shutdown

- 15% probability of 90% shutdown

- 90% probability of 10% shutdown

The reality is shown by the observations in the lower graph of figure C.2, where it can

be seen that the first case’s peak value was 35% high-speed shut-down and the second case

exhibited a peak value of 45% of high-speed shut-down.

Practical experience from evaluating high-speed shutdown events and discussing the alert

system with the operators, showed that it is absolutely crucial that the operators understand the

alerts and are capable of checking and verifying themselves in a graphical way, what they may

receive as written alert. Therefore, the impact of a false alarm needs to be evaluated, decided
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upon and documented in the design phase, so that the operators have a clear reference system

to relate an alert to. Technically, the frequency of the alert generation should be adjusted to:

a lead time of the alert

b change of severity level since previous alert

c initial and valid week day and time of the day

d severity of the event computed from a ramp-rate perspective and actions required

e the need and possibility to call back and/or revert actions

The strategy of issuing an alert should include (1) issuing of every alert according to a

simple scheme and (2) reduction of the amount of alerts to a level that prevents that critical

alerts are not accidentally overlooked.

It was also found that the Use of sliding interval from 23-25m/s was an important

introduction into the design to ensure that tje warning is issued before the event.
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Chapter 1

Background and Objectives

1.1 BEFORE YOU START READING

This is the second part of a series of three “recommended practices” documents

that deal with the development and operation of forecasting solutions. This docu-

ment “Execution of Benchmarks and Trials” deals with the configuration and steps

for carrying out a benchmark or trial of different forecasting solutions prior to

selection.

The first part “Forecast Solution Selection Process” deals with the selection and

background information necessary to collect and evaluate when developing or re-

newing a forecasting solution. The third part “Forecast Evaluation” provides infor-

mation and guidelines regarding effective evaluation of forecasts, forecast solutions

and benchmarks and trials. If your main interest is in selecting a forecasting solu-

tion or verifying the quality of your forecast solution, please move on to part 1 or

part 3 of this recommended practices guideline, respectively.

1.2 BACKGROUND

The effectiveness of forecasts in reducing the variability management costs of

power generation from wind and solar plants is dependent upon both the accu-

racy of the forecasts and the ability to effectively use the forecast information in

the user’s decision-making process. Therefore, there is considerable motivation

for stakeholders to try to obtain the most effective forecast information as input to

their respective decision tools.

This document is intended to provide guidance to stakeholders on a primary mech-

anism that has been used extensively in the past years to assess the accuracy of

potential forecasting solutions: benchmarks and trials.

1



2 Chapter 1. Background and Objectives

This guideline focuses on the key elements to carry out a successful trial or bench-

mark and on typical pitfalls. It will also provide recommendations as to when it

is beneficial or too risky or expensive in terms of resources to carry out a trial or

benchmark.

1.3 DEFINITIONS

The two main terms and concepts “trial and benchmark” that are used in this

recommended practice shall be defined in the following. Note, the focus has been

on forecasting processes in the power industry and the definition may not have a

completely general character to be applied to other areas of business. Additionally,

it should be noted that “forecasting trials and benchmarks” will be abbreviated

with “t/b” throughout this document for simplicity.

1.3.1 Renewable Energy Forecast Trial

A “renewable energy forecast trial” is in this document defined as an exercise

conducted to test the features and quality of a renewable energy forecast such as

wind or solar power. This may include one or more participants and is normally

conducted by a private company for commercial purposes. A trial is a subset of a

Renewable Energy Forecast Benchmark.

1.3.2 Renewable Energy Forecast Benchmark

A “renewable energy forecast benchmark” is in this document defined as an exer-

cise conducted to determine the features and quality of a renewable energy forecast

such as wind or solar power. The exercise is normally conducted by an institu-

tion or their agent and multiple participants, including private industry forecast

providers or applied research academics.

1.4 Objectives

The guidelines and best practices recommendations are based on years of industry

experience and intended to achieve maximum benefit and efficiency for all parties

involved in such benchmark or trial exercises. The entity conducting a trial or

benchmark taking the recommendations provided in this guideline into consider-

ation will have the following benefits:

1. Being able to evaluate, which of a set of forecast solutions and forecast service

providers (FSP) fits best the need, specific situation and operational setup
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2. Short term internal cost savings, by running an efficient t/b

3. Long term cost savings of forecast services, by following the trial standards

and thereby help reduce the costs for all involved parties

In the discussion of the process of obtaining the best possible forecasting solution,

there are a number of terms and concepts that are used. Several of the key terms

and concepts are defined in the following.

Note, these definitions are kept as general as possible with a focus on forecast-

ing processes in the power industry and may not have such a completely general

character to be applied to other areas of business.





Chapter 2

INITIAL CONSIDERATIONS

Key Points

This section is targeted to the task of engaging a forecast service provider (FSP) and

how to navigate through the vast amount of information.

2.1 Deciding whether to CONDUCT a Trial or Benchmark

The most important initial consideration when planning a forecasting trial or bench-

mark (t/b) is to be clear about the desired outcome.

The following tables provide information about the benefits and drawbacks of con-

ducting a t/b as a key part of the selection process. Before a decision is made to

conduct a t/b it is recommended to go through these tables and determine, if the

effort is warranted.

A possibly attractive alternative approach for a forecast user that wishes to evaluate

a set of forecast solutions for their ability to meet the user’s needs is to engage an

independent trial administrator. An experienced and knowledgeable administrator

can act as a neutral third party and advocate for both the vendors and the end-users

in the design and execution of a t/b and the evaluation and interpretation of the

results. Such an arrangement builds trust in the process among all parties.

An effective administrator can take the requirements from the user and ensure

they are realistically incorporated into the trial design. There obviously is a cost

to engage such an administrator, but it may be more cost effective for the user and

generate more reliable information for the user’s decision-making process.

2.2 Benefits of Trials and Benchmarks

5
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Table 2.1: Decision support table for situations in which trials/benchmarks are determined to be

beneficial

Situation Benefit

Real-time trial for an entire portfolio High cost but information gain is

greater and more representative; pro-

vides the best estimate of the error

level and which solution/FSP is best

for the target applications

Real-time trial for a selected number

of sites

Lower cost but still a substantial in-

formation gain if sites are well se-

lected; provides a reasonable idea

about the error level and a good in-

dication of which solution/FSP fits is

best for the target applications

Retrospective benchmark with his-

toric data for a specific time period

separate from a supplied training

data set

Low cost: In multi-FSP systems, the

error level of an additional FSP is

secondary, while the correlation with

other FSPs determines whether the

additional FSP improves the overall

error of a multi-FSP composite fore-

cast

Blind forecast without historic mea-

surements

Test to get an indication of the ac-

curacy of forecasts from an FSP

in the upstart phase of a project,

where no historical data are avail-

able. Excludes statistical methods,

which need historical data. An in-

expensive way to get an indication

of forecast accuracy for larger portfo-

lios (> 500MW), where measurement

data handling is complex. NOTE:

There is an inherent risk that the re-

sult may be random and FSP use dif-

ferent methods for blind forecasting

and forecasting with measurement

data.

See also Table 2.2 for limitations of

this approach.
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2.3 Limitations with Trials and Benchmarks

Table 2.2: Decision support table for situations in which trials/benchmarks are determined to

contain limitations and a t/b is not recommended.

Situation Limitation Recommendation

Finding best

service provider

for large portfo-

lio (> 1000MW)

distributed over

a large area

Trial for entire portfo-

lio is expensive for client

and FSP in terms of time

and resources.

Limiting scope of trial limits rep-

resentativeness of results for en-

tire portfolio. RFI and RFP in

which FSP’s methods are eval-

uated and the use of an incen-

tive scheme in the contract terms

provides more security of perfor-

mance than a limited trial.

Finding best

service provider

for a medium

sized portfolio

(500MW< X <

1000MW) over a

limited area

Trial for entire portfo-

lio is expensive for client

and service provider in

terms of time and re-

sources.

Limiting scope of trial limits rep-

resentativeness of results for en-

tire portfolio. RFP in which FSP’s

methods are evaluated. Design

of a system that enables an easy

change of FSP and use if an in-

centive scheme is more a more

cost effective approach than a

trial.

Finding best

service provider

for small sized

portfolio (<

500MW)

Trial for entire portfolio

usually requires signifi-

cant staff resources for

about 6 months

Trial is feasible, but expensive.

Difficult to achieve significance

on target variable in comparison

to required costs and expenses –

trial costs makes solution more

expensive. Less expensive to

setup an incentive scheme and

a system where the FSPs can be

changed relatively easily.

Finding best

service provider

for micro port-

folio (< 100MW)

or single plants

Cost of a trial with

many parties can easily

be higher than the cost

of a 1-year forecasting

contract.

Time for a trial can delay oper-

ational forecast utilization by up

to 1 year! Select FSP based on an

evaluation of methods and expe-

rience.
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Situation Limitation Recommendation

Design a system

that enables an

easy change of

FSP and use

an incentive

scheme for FSP

performance

Power marketing Best score difficult to define, as

sale of energy is also depen-

dent on market conditions and

a statistical forecast performance

score such as RMSE or MAE

does not reflect the best mar-

keting strategy More efficient

and timely to perform back test

of historical forecasts combined

with historical prices, or make a

strategic choice with an perfor-

mance incentive.

Market share of

FSP in a specific

power market is

high

FSP monopolies in a spe-

cific power market mean

that forecast errors are

correlated and hence in-

crease balancing costs.

Ask about the market share of a

provider and do not choose one

with a share > 30% as the only

provider!

Blind forecast-

ing, i.e. no

historic mea-

surements data

available

Without measurements

the value of a trial is

very limited due to the

significant improvement

from statistically train-

ing forecasts and the im-

portance of recent data

for intra-day forecasts

Evaluation can only be mean-

ingfully done for day- ahead or

longer forecasts.

Some FSP may

us different

methods for

forecasting

with and with-

out historic

data (statistical

methods need

historical data

to function! )

Results are limited

to testing quality on

upstart phase of new

projects, where no his-

torical data exist (see

also Table 1).

For single sites, the benefits of

training are so large (>50% of er-

ror reduction at times) that blind

forecasting is not recommended.

For larger portfolios it can pro-

vide an indication of quality -

for physical conversion methods

only!
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2.4 Time lines and Forecast periods in a Trial or Benchmark

Time lines and forecast periods need to be set strictly in a trial or benchmark in

order to achieve a fair, transparent and representative exercise.

The following time lines should be considered:

1. Start and stop dates of the t/b must be fixed

2. Start and stop dates must be the same for all FSPs

3. Pre-trial setup and test dates for IT infrastructure (including any required

security protocols) for trial must be specified and enforced

4. Delivery times of forecasts must be set and enforced

5. Forecasts for periods with missing forecasts from one FSP must be excluded

for all FSPs

2.5 1-PAGE “Cheat sheet” Checklist

The following checklist is provided to help trial organizers save time, apply best

practices, and avoid common pitfalls when designing and executing forecast trials.

It has been compiled by leading forecast vendors and researchers with many years

experience.
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Figure 2.1: “Cheat sheet” Checklist



Chapter 3

Deterministic Trials and Benchmarks

Key Points:

Deterministic trials have become an established way to test different forecast venders

or test the compatibility and benefits of combining various forecast methods in the

forecast solution selection process. Such trials are complicated and the required

ressounces to conduct fair, transparent and representative results are often unceres-

timated. In order to generate valuable results, such trials need to follow a specific

structure, which is characterised by three phases:

• Phase 1: Preparation

• Phase 2: During Trial

• Phase 3: Post Trial

These three main phases of a trial exercise, preparation ahead of the trial, actions

during the trial, and post-trial follow up are described in detail in the following.

3.1 Phase 1: PREPARATION

The time required for the pre-trial preparation is significant and should not be

underestimated to insure a successful outcome. If the operatorr of the trial has no

experience in renewable energy forecasting or running a t/b, it would be prudent

to contact an experienced individual, organization or forecast provider to obtain

feedback on what can reasonably be accomplished given the target time line and

objectives. Part 1 of this recommended practice contains a decision support path

that may be useful for determining the proper course of action.

11
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3.1.1 Key Considerations in the Preparation Phase

Once the objectives of the t/b are known (see Section 1.1 Background and 1.2

Objectives), there are some key decisions to be made that will play a major role in

determining the complexity of the trial. They are:

(1) Choice of forecast horizon Are forecast horizons less than 6 hours operationally

important? If the answer is "no", establishing a live data feed may not be necessary.

Although there are advantages of running a trial with a live data feed, it is one of

the most time consuming aspects of trial preparation. Are forecast lead times

greater than “day-ahead” operationally important? If the answer is no, this will

reduce the volumes of data that need to be processed saving time and resources. If

many lead times are of operational importance, consider that the performance of

different providers will likely vary across lead times, therefore, different lead times,

e.g. hour-ahead, day-ahead and week-ahead, should be evaluated separately.

(2) Weather conditions for the exercise: Will the benchmark take place during pe-

riods of more difficult to predict weather conditions that reflect the organization’s

difficulties in handling renewable generation, e.g. windy or cloudy periods? The

answer here should be "Yes" to insure the sample size of harder-to-forecast events

is sufficient. If the answer is "No", the trial operator should strongly consider do-

ing a retrospective forecast (also known as "backcast") that includes the types of

conditions that are critical for the user’s application.

(3) Historical data/observations for the exercise: For locations in which there are

significant seasonal differences in weather conditions and the associated renewable

generation levels and variability, it is best to provide 12 months or more of histori-

cal data from the target generation facilities to the FSPs for the purpose of training

their forecast models. However, if it is not feasible to make this amount of data

available or if the target location does not exhibit much seasonal variation, most

FSPs can typically train their forecast models reasonably well with 3-6 months of

on-site historical observations.

It should be noted that advanced machine learning methods often exhibit signif-

icantly greater performance improvement over less sophisticated methods as the

training sample size increases. Thus, FSPs that employ the latest and most ad-

vanced machine learning prediction tools may not be able to demonstrate the ul-

timate value of their approaches, if only short historical data sets are provided. If

6-12 months of data are not available, the trial operator might consider another

location or conduct a longer trial on the order of 4-6 months to monitor forecast

improvements over time as more data becomes available to the FSPs to improve

the quality of the training of their prediction models.

In general it is recommended that the t/b operator should provide a dataset of the

typical length that is available data for the application that is the target of the t/b.

If more historical data is available for a t/b than in the typical application, care

should be taken in the evaluation of methods, as e.g. machine learning methods
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might outperform e.g. physical methods in the trial, but perform worse in the real

application due to the benefits associated with the longer data sets.

(4) Representativeness: Is the benchmark location representative from a wind-

climatology perspective of the scope of locations for which the operator will ul-

timately require operational forecast services? That is, the trial operator should se-

lect a location that is needed for subsequent forecasting or a location with a similar

climatology. Operators should also be aware of the randomness of forecast perfor-

mance on single locations, if a large area with many sites is the target. It should

be noted that forecast performance exhibits a significant “aggregation effect”. That

is the magnitude and patterns of forecast errors vary substantially depending on

the size and composition of the forecast target entity. Thus, the characteristics of

forecast errors for an individual turbine, a single wind park and a portfolio of

wind parks will typically be quite different and the forecast evaluator should be

very careful when inferring forecast performance characteristics from one scale of

aggregation (e.g. a single wind park) to a different scale (e.g. a geographically

diverse portfolio of wind parks) (see also part 3 of this recommended practice for

more details on evaluation methods).

(5) Metrics: Are the metrics that will be used to evaluate the forecasts meaningful

to the success of my project? There are a wide variety of well-documented error

metrics that penalize forecast errors differently. For example, root mean squared

error penalizes large errors more than small errors. It is important to choose a

metric, or set of metrics, that reflects the value of an improved forecast to the user’s

application and can discriminate between different forecast solutions. Please refer

to part 3 of this recommended practice for details on metric selection.

3.1.2 Metadata Gathering in the Preparation Phase

Details of the forecast trial, such as location and capacity of the target generator,

are required by all FSPs and comprise the trial Metadata. Appendix A “Metadata

Checklist” provides the information that is typically needed by FSPs for participa-

tion in a trial and is designed to be used as a spreadsheet form that is completed

during the preparation phase of a t/b. This should also include the desired for-

mat (filename and content) of the forecasts you’ll be comparing. The best way to

communicate the forecast file format to multiple FSPs is to provide an example file.

3.1.3 Historical Data Gathering in the Preparation Phase

On-site observations of power production or the renewable resource (e.g., irradi-

ance or wind speed at hub height) are critical for helping the FSPs statistically

“train” their forecast models and thus reduce error and bias in the forecasts. Good

quality data is critical. ”Good quality” means that the data does not, for example,
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contain many gaps or unrepresentative values. Curtailed power data should be

accompanied by plant availability or a curtailment flag.

Data time intervals should be regular and there should be a clear documentation

of the units, how the observations were averaged, the time zone of the data, and

whether there’s a shift in time due to daylight savings time. Appendix A of this

document has a concise list of the necessary historical data attributes required to

efficiently start a t/b.

3.1.4 IT/Data Considerations in the Preparation Phase

Most organisations have constraints on the amount of IT resources available for a

t/b. Therefore, it is best to plan ahead or keep the sending and receiving of data

very simple. The primary IT issue is typically the selection and setup of data for-

mats and communication protocols that will be used for the t/b operator to send

data to the FSPs and for the FSPs to send forecasts to a platform designated by the

t/b operator.

Data formats:

There are many possibilities for data formats, which range from a simple text file

with comma separated variables (CSV) to more sophisticated XML or openAPI

formats. Similarly, there are a wide range of communication protocols that can

be used. These range from the relatively simple Secure Shell File Transfer Protocol

(SFTP) to more sophisticated web service or API structures. The more sophisticated

structures have advantages and there are many IT companies and resources that

support these structures but they almost unavoidably increase the complexity of

the setup.

Unless adequate IT resources or knowledge are available for all participants (espe-

cially the operator) it is recommended that simple data formats and communica-

tion resources be employed for a t/b. This typically means the use of the CSV data

format and an SFTP data communications protocol.

Live trial considerations:

If a live trial is planned (most common), but real-time data will not be made avail-

able to the FSPs, then a place for each FSP to send forecast files will need to be

setup. One of the metrics that is often used to evaluate an FSP is the timeliness of

forecast delivery. In this case, it is important that a mechanism to verify the time

of delivery be established. If real-time data is provided by the t/b conductor, it is

typically easiest to create a common password-protected file server directory from

which FSPs can download the data via a protocol such as SFTP. Another approach

is to use SFTP to push data files to each FSP. This typically requires more effort,

especially for the t/b operator.
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Historical data can be provided to FSPs in the same data format via the same com-

munication protocol. However, it often requires a SCADA engineer or expert on

third party software to extract the historical data for the SCADA (or other) data

archive.

Legal Agreements:

Another often-overlooked data-related issue is the legal agreements required to

disseminate data from possibly multiple data provider entities (e.g. the wind fa-

cility owners/operators) to multiple data user entities (e.g. the FSPs in the t/b).

This may be relatively simple in cases in which the user (such as a generator fleet

operator) owns all the data and is willing to make it available for the t/b with few

restrictions. However, it be a very complex and time consuming process in cases in

which the user (e.g. a system operator) does not own the data and merely serves

as a conduit from the multiple data owners with different data dissemination re-

strictions to the data users.

In such cases, the process of formulating and executing the required legal docu-

ments (such as non-disclosure agreements (NDAs)) can cause substantial delays in

the initiation of a t/b and perhaps even change its scope.

See Appendix B for example formats in csv and xml.

3.1.5 Communication in the Preparation Phase

Transparency:

Anonymising the FSPs for all communication is considered a best practice as it en-

sures transparency of the available information, promotes competition and entry

from smaller FSPs trying to become more established in the industry. Commu-

nication via email therefore should always be consistent with blind copies to all

FSPs.

Consistency:

Consistent in this context means always sending and sharing emails with the same

group of FSP users. Common information sharing engenders trust and the percep-

tion of fairness in the benchmark or trial process. In the preparation phase, it is

not uncommon that the FSPs will have questions that could affect how the trial is

conducted.

For this reason, it is recommended to have a 2-week question and answer period

before the official start date to allow FSP participants to ask questions that then

can be answered in a living document that contains all questions and answers up

to the present time. All participants should be notified whenever this document is

updated.

Frequency:

The importance of frequent and clear communication cannot be overstated when
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conducting a t/b. Not only will the t/b operator receive the most accurate fore-

casts, it will make it much easier the next time a t/b is executed to gage the state-

of-the-art in forecasting technologies and features.

3.1.6 Test run in the Preparation Phase

It is recommended to that a minimum of one-week is allocated for a test period

before the official start date of the t/b to identify and remove any technical issues

that could invalidate forecast results. This helps to improve the likelihood that all

results can be included in the final validation calculations without the need for

omitting the first part of the t/b.

3.2 Phase 2: DURING BENCHMARK/TRIAL

Verification & Validation Report preparation Often the most successful forecast

provider is one that can show steady improvement over time. Providing an interim

validation report will not only prepare the trial operator for the final validation

report but will give important feedback to the FSPs – not only throughout the trial

or benchmark, but also in the daily operations.

validation Strategy:

Part 3 of this recommended practice provides information about validation and

verification that incentivices the FSP, where it is beneficial for the end-user.

Verification strategy:

In ??, a verification and validation strategy is described that emphasizes that veri-

fication of validation code is an essential part of a validation. In the case of a trial

or benchmark, it is recommended that the verification strategy and the input data

for the validation is shared with the FSP. In that way, the verification code is tested

as recommended by ?? and there is transparency on the results. If the FSPs result

differs from the end-user’s result, the errors can be detected and solved.

3.2.1 Communication during the T/B

In a well-designed t/b, most of the communication between the trial operator and

FSPs should be during the pre-trial period. However, issues often arise especially

during a live trial with a real-time data feed. It may be helpful to all t/b partici-

pants to establish an open forum during the first part of the live t/b period (e.g. the

first 2 weeks) to provide a way to effectively and uniformly resolve all issues early

in the t/b period However, it is strongly recommended that if any attributes of the

t/b are changed at any point during the live part of the t/b, the changes should be

communicated to all participants immediately as they might require action on the

FSP’s part.
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Examples might include: changing the forecast validation metric, if there are unre-

ported outages that should be omitted for future model trainings, or if the location

of the data feed or forecast file destination has changed. It should be emphasized

that all communications related to the t/b should be distributed to all FSPs with-

out exception. Additional communication with individual FSPs (including forecast

incumbents) can be interpreted as bias on the part of the operator of the t/b and

in some cases may actually bias the t/b result due to information that impacts

forecast design, production or delivery not being equally available to all FSPs.

3.2.2 Forecast Validation and Reporting during the T/B

Forecast validation reports are often compiled during the t/b. With forecast data

coming in at regular intervals, the t/b operator has real data to feed into the vali-

dation report. If the t/b has a duration of several months (i.e., >3 months), it is rec-

ommended to provide at least one interim report to FSPs that include anonymized

results from all FSPs. This benefits the trial operator as errors in the evaluation

process or the report generation can be flagged earlier and ways to make the re-

port generation more efficient can be realized. The interim report benefits the FSPs

as course-corrections can be made during the t/b to improve the forecasts.

If there are several FSPs participating, efficiencies can be realized by automating

part or most of the validation metrics especially as the forecast file format should

be the same from all FSPs.

3.3 PHASE 3: POST TRIAL OR BENCHMARK

The post trial phase is an important aspect of the t/b because FSP selection will

likely occur during this phase based on the criteria set out at the start of the t/b.

(see recommended practices part 1 on “evaluation of services and decision sup-

port”).

3.3.1 Communication at the end of the T/B

If the trial operator hasn’t already done so, an email should be sent within a week

before the end date of the t/b to alert FSPs that the end of the trial is near and to

communicate the timeline for sharing results and re-iterate the specifications of the

FSP selection process.

3.3.2 Forecast Validation and Reporting at the end of the T/B

If an interim report was provided during the trial, then the final report can ei-

ther be an updated version of the validation report expressing the bulk metrics

or appended month-by-month forecast validation results. For transparency and to
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promote further forecast improvements, it is recommended that the t/b operator

share the anonymized forecast results from each FSP at the time-interval frequency

that forecasts were being made at (e.g., hourly). This will help FSPs discover where

forecasts are similar or different from the competition which may spawn improved

methodologies.



Chapter 4

Probabilistic Trials and Benchmarks

Key Points:

Testing, verification and validation of probabilistic forecast methods and

forecast solutions need to be handled fundamentally different than for de-

terministic methods. The latter can be aggregated, combined and compared

and has in the past been mostly used to foster improvements on basic statis-

tic metrics.

Probabilistic forecast methods on the other hand deal with uncertainties in

the forecast process chain and can be compared, but not - in a straight for-

ward or easy way – aggregated or combined.

While it is possible to make trials and benchmarks with probabilistic solu-

tions, the verification has to be done by method and in most cases with event

based verification metrics such as:

(i) “Event evaluation”

Examples are categorial event analysis with contingency tables, critical

success index (CSI), measuring the ratio of correct event forecasts to

the total number of forecasted and observed events.

(ii) “Cost or Loss Functions”

Such functions measure the sensitivity of a user’s application to the

forecast error which for example can be wether the observations is

within the forecasted uncertainty spread, uncertainty measures such

as quantiles or precentiles.

Probabilistic trials and benchmarks are in this section defined as a verification and

validation of probabilistic forecast solutions for specific applications in the energy

industry.
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Because the probabilistic forecast solution have very distinct and different attributes

in comparison to deterministic forecast solutions, their testing also needs specific

requirements and attention. For example, if an end-user request quantiles or per-

centiles of a specific variable to be delivered by different forecast vendors, it is not

possible to:

• aggregate variable’s quantiles or percentiles

• aggregate location’s quantiles or percentiles

• average quantiles or percentiles over time

The phases described in section 3 are also valid for probabilistic forecast solutions.

However, both the testing and the evaluation phase need slightly different consid-

erations.

4.1 Phase 1: PREPARATION

4.2 Phase 2: DURING BENCHMARK/TRIAL

4.3 PHASE 3: POST TRIAL OR BENCHMARK



Chapter 5

BEST PRACTICES

Although there are many different ways that a t/b may be conducted, there are

some common elements of a successful t/b that provide the t/b operator with the

best forecast solution and the participants with useful knowledge of where their

forecast ranks among the competition.

The following are some selected best practice recommendations:

1. A clear purpose for the t/b exercise

2. Pre-defined and explicit accuracy metrics and solution selection criteria

3. A clear time line (start/end dates, selection announcement, contract award)

4. Anonymized forecast results. Ask FSP’s approval to share results. This helps

FSPs find ways to improve their forecast accuracy and see their shortcomings.

5. Question & answer period before benchmark period begins ( 1-2 weeks)

6. Sufficient time allocated for testing the transfer of data between participant(s)

and operator

7. Prompt communication to participants regarding any changes or answers to

questions that arise

8. Consistent forecast file format requested of all - example file sent to all

9. Consistent data formats (both observations and forecast files) ideally as close

to (if not identical to) what the trial operator needs, once contract is executed.

10. Providing the same historical and project metadata to all participants

11. Allocation of sufficient resources by the t/b conductor to furnish data and

perform validation
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12. PITFALLS TO AVOID The following list describes a few common mistakes

and how to avoid them in the design, setup and execution of a forecast t/b.

The consequences of errors and omissions in trials are often underestimated.

However, if results are not representative, the efforts that have gone into a t/b

can effectively be wasted. Some of these common pitfalls can be expensive to

the operator because they result in placing the operator in a position of mak-

ing a decision without having truly objective and representative information

to base it on.

(a) Poor Communication

All FSPs should receive the same information. Answers to questions

should be shared with all FSPs. Fairness, and perception of fairness, are

important when running and evaluating the results of trials.

(b) Unreliable Validation Results

Don’t compare forecasts from two different power plants or from differ-

ent time periods. Forecast performance will vary depending on location

and specific time periods. Only forecasts for the same period and loca-

tion/power plant/portfolio should be compared.

(c) Examples of Bad Design

i. A trial with 1 month length during a low-wind month

ii. No on-site observations shared with forecast providers

iii. Hour-ahead forecasts initiated from once a day data update

iv. Data only processed in batches or at the end of a real-time trial –

this is an invitation for cheating to the FSPs. In most cases, there

will be some that use the opportunity to do so

(d) Examples of Missing or Non-communicated Data

i. daylight savings time changes are not specified

ii. data time stamp represents interval beginning or ending not speci-

fied

iii. plant capacity of historical data differs from present capacity

iv. data about curtailment and maintenance outages not provided

(e) Possibility of Cheating

In any type of competition, cheating is a reality. If there are not taken

precautions, results may be biased and decisions are taken upon in-

correct results. It is recommended that the possibility of cheating is

considered with seriousness and avoided, where possible.

Typical situations, where cheating is being observed are:
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• Forecast t/b being carried out for a period of time for which FSPs are given

data. Recommendation: separate historical data from t/b period.

• Forecast t/b being carried out for a period of time for which FSPs are given

data. Recommendation: separate historical data from t/b period.

• if there is one or more incumbent FSP with a longer history of data, this

should be taken into consideration in the evaluation, as such an FSP may

not be able or willing to modify forecast models for the purpose of being

“comparable” in a t/b. Recommendation: see limitations in Table 2 and part

3 of this recommended practice.

Other observed situations, where cheating is happening is:

• Missing forecasts: FSP leave out “difficult situations” as missing forecasts

are often not penalized. However, missing data may bias “average” fore-

cast metrics, potentially resulting in the formulation of incorrect conclusions.

Recommendation: remove dates where forecasts are missing for one FSP for

all FSPs

• If delivered forecasts from a FSP as part of a live trial are not downloaded,

moved or copied in accordance with the operational process being simulated,

and certainly before the time period being forecast, FSPs can potentially re-

new forecasts with high accuracy due to fresher information being available.

Recommendation: Such an omission should not be underestimated and care

taken for the evaluation.
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GLOSSARY AND ABBREVIATIONS

Ensemble Forecasting:

Ensemble forecasts are sets of different forecast scenarios, which provide an objec-

tive way of evaluating the range of possibilities and probabilities in a (weather or

weather related) forecast.

Probabilistic Forecast:

General description of defining the uncertainty of a forecast with objective meth-

ods. These can be ensemble forecasts, probability of exceedance forecasts, or other

forms of measures of uncertainty derived by statistical models.

Quantile:

A quantile is the value below which the observations/forecasts fall with a certain

probability when divided into equal-sized, adjacent, subgroups.

Quartile:

quantiles that divide the distribution into four equal parts.

Percentile:

Percentiles are quantiles where this probability is given as a percentage (0-100)

rather than a number between 0 and 1.

Decile:

Quantiles that divide a distribution into 10 equal parts.

Median:

the 2nd quantile, 50th percentile or 5th decile, i.e. the value, where the distribution

has equally many values above and below that value.
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Abbreviations

The following abbreviations are used in this document:

FSP Forecast service provider

NWP Numerical Weather Prediction

EPS Ensemble Prediction System

NDA Non-disclosure Agreement

RFI Request for Information

RFP Request for Proposals

TSO Transmission system operators

ISO Independent system operator



Appendix A

Metadata Checklist

The following checklist (Table A.1), when filled out, will greatly aid FSPs in config-

uring forecasts efficiently. Many of the essential questions relevant to benchmark

and trial forecast model configuration are provided here.

Note that the following table is an example and may not contain all necessary in-

formation required for the FSP to setup a solution for your purpose. The table is

meant to serve as a guideline and can be copied, but should be carefully adopted

to the specific exercises before sending out to FSP with questions filled in. If this

is done with care, it will expedite forecast configuration and save back and forth

communication time.

Table A.1: Wind Power Forecast Trial Checklist

Metadata Input

Name of site(s) as it should appear in datafile

Name of site(s) as it should appear in datafile

Latitude and longitude coordinates of sites

Nameplate capacity of each site

Will a graphical web tool be needed?

Turbine make/model/rating

Number of turbines

Hub height of turbines

Please attach suitable plant power curve

Forecast output information
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Metadata Input

Forecast output time intervals (e.g., 15-min, 1-hourly)

Length of forecast required

Timezone of forecast datafile

Will local daylight savings time be needed?

Forecast update frequency (e.g., once a day, every hour)

Value of Forecast

Which variables will be forecasted and validated?

Which forecast horizons are being validated?

Which metrics are being used to gage forecast performance?

List criteria for determining winning forecast provider

Will results be shared as a report? Will results be anonymized?

On what frequency will results be shared with forecast provider?

Historical Data Checklist

Is the data in UTC or local time?

Is the data interval beginning or ending or instantaneous?

What are the units of the data?

If met tower histories being provided, indicate height of measure-

ments.

Realtime Data Checklist (if applicable)

Is the data in UTC or local time?

Is the data interval beginning or ending or instantaneous?

What are the units of the data?

Email and Telephone number of technical point of contact (POC)

Email and Telephone of datafeed POC

Name and email of users that need website access

Person name and email that filled out this checklist



Appendix B

Sample forecast file structures

Back and forth communication can sometimes delay the start of a trial or bench-

mark. One of these delays is getting the forecast file output format just right for

the beginning of the trial.

Standardisation of the format will make the trial operators life much easier when

time comes to validating forecasts. A best practice here is for the trial operator to

use a format that is already in use or a format that has already proven to work in

operations.

Figure B.1: Example forecast file with the first few fields.

B.0.1 XSD template example for forecasts and SCADA

The following are typical XSDs for forecasts and SCADA data in a b/t, usable also

with WebServices
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<?xml vers ion = " 1 . 0 " encoding =" utf −8"? >

<xs : schema at t r ibuteFormDefaul t =" unqual i f i ed " elementFormDefault =" q u a l i f i e d "

xmlns : xs =" ht tp ://www. w3 . org /2001/XMLSchema">

<xs : element name=" WindForecast ">

<xs : complexType>

<xs : a t t r i b u t e name="VendorCode " type =" xs : s t r i n g " use =" required "/>

<xs : a t t r i b u t e name=" ImportTime " type =" xs : dateTime " use =" required "/>

<xs : sequence >

<xs : element name="CUSTOMER">

<xs : complexType>

<xs : a t t r i b u t e name="name" type =" xs : s t r i n g " use =" required "/>

<xs : sequence >

<xs : element name=" F o re c a s t ">

<xs : complexType>

<xs : a t t r i b u t e name="MWaggregated " type =" xs : double " use =" required "/>

<xs : a t t r i b u t e name=" time " type =" xs : dateTime " use =" required " />

<xs : sequence >

<xs : element name=" P r o b a b i l i t y ">

<xs : complexType>

<xs : a t t r i b u t e name="P95 " type =" xs : double " use =" required "/>

<xs : a t t r i b u t e name="P50 " type =" xs : double " use =" required "/>

<xs : a t t r i b u t e name="P05 " type =" xs : double " use =" required "/>

<xs : a t t r i b u t e name="max" type =" xs : double " use =" required "/>

<xs : a t t r i b u t e name="min " type =" xs : double " use =" required "/>

</xs : complexType>

</xs : element >

<xs : element name="WindFarms">

<xs : complexType>

<xs : sequence >

<xs : element name="WindPark1">

<xs : complexType>

<xs : a t t r i b u t e name=" id " type =" xs : s t r i n g " use =" required "/>

<xs : a t t r i b u t e name="mw" type =" xs : double " use =" required "/>

</xs : complexType>

</xs : element >

</xs : sequence >

</xs : complexType>

</xs : element >

</xs : sequence >

</xs : complexType>

</xs : element >

</xs : sequence >

</xs : complexType>

</xs : element >

</xs : sequence >

</xs : complexType>

</xs : element >

</xs : schema>
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B.0.2 XSD SCADA template for exchange of real-time measurements

<?xml vers ion = " 1 . 0 " encoding =" utf −8"? >

<xs : schema at t r ibuteFormDefaul t =" unqual i f i ed " elementFormDefault =" q u a l i f i e d "

xmlns : xs =" ht tp ://www. w3 . org /2001/XMLSchema">

<xs : element name="WindSCADA">

<xs : complexType>

<xs : sequence >

<xs : element maxOccurs="unbounded " name="WindPark">

<xs : complexType>

<xs : a t t r i b u t e name="ID " type =" xs : s t r i n g " use =" required "/>

<xs : a t t r i b u t e name="Time " type =" xs : dateTime " use =" required "/>

<xs : a t t r i b u t e name="Mw" type =" xs : decimal " use =" required "/>

<xs : a t t r i b u t e name=" A v a i l a b i l t y " type =" xs : decimal " use =" opt iona l "/>

<xs : a t t r i b u t e name=" CurrentActivePower " type =" xs : decimal " use =" opt iona l "/>

<xs : a t t r i b u t e name=" Curtai lment " type =" xs : s t r i n g " use =" opt iona l "/>

<xs : a t t r i b u t e name="WindSpeed " type =" xs : decimal " use =" opt iona l "/>

<xs : a t t r i b u t e name=" WindDirection " type =" xs : decimal " use =" opt iona l "/>

<xs : a t t r i b u t e name=" AirTemperature " type =" xs : decimal " use =" opt iona l "/>

<xs : a t t r i b u t e name=" AirPressure " type =" xs : decimal " use =" opt iona l "/>

<xs : a t t r i b u t e name="Outage " type =" xs : decimal " use =" opt iona l "/>

</xs : complexType>

</xs : element >

</xs : sequence >

</xs : complexType>

</xs : element >

</xs : schema>
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Chapter 1

Background and Objectives

1.1 BEFORE YOU START READING

This is the third part of a series of three recommended practice documents that deal with

the development and operation of forecasting solutions in the power market. The first part

Forecast Solution Selection Process deals with the selection and background information

necessary to collect and evaluate when developing or renewing a forecasting solution for the

power market. The second part Design and Execution of Benchmarks and Trials, of the series

deal with benchmarks and trials in order to test or evaluate different forecasting solutions

against each other and the fit-for-purpose. The third part Forecast Solution Evaluation, which

is the current document, provides information and guidelines regarding effective evaluation

of forecasts, forecast solutions and benchmarks and trials.

1.2 Introduction

The evaluation of forecasts and forecast solutions is an obligation for any forecast provider as

well as end-user of forecasts. It is important, because economically significant and business

relevant decisions are often based on evaluation results. Therefore, it is crucial to design and

outline forecast evaluations with this importance in mind, give this part the required attention

and thereby ensure that results are significant, representative and relevant. Additionally,

forecast skill and quality has to be understood and designed in the framework of forecast

value in order to evaluate the quality of a forecast on the value it creates in the decision

processes. This first edition of the recommended practices guideline focuses on a number

of conceptual processes to introduce a framework for evaluation of wind and solar energy

forecasting applications in the power industry. A comprehensive outline of forecast metrics is

not part of this guideline. There are a number of very useful and comprehensive publications

available (e.g. [1], [2], [3], [4]) which will also specifically be referenced. A state-of-the-art

of forecast evaluation is also not part of this guidelines, as the process of standardization has

1



2 Chapter 1. Background and Objectives

only just started in the community. This topic will be covered in one of the next versions of

this guideline.

This first version of the recommended practices guideline focuses on:

1. Impact of forecast accuracy on application

First, it’s often difficult to define the forecast accuracy impact to the bottom line as

forecasts are just one of many inputs. Second, trials or benchmarks often last longer

than anticipated or too short to generate trustworthy results. Thus, the Forecast User is

often under pressure to either wrap up the evaluation quickly or to produce meaningful

results with too little data. As a consequence, average absolute or squared errors are

employed due to their simplicity, even though they seldom reflect the quality and value

of a forecast solution for the Forecast User’s specific applications.

2. Cost-Loss Relationship of forecasts

A forecast that performs best in one metric is not necessarily the best in terms of other

metrics. In other words, there exists no universal best evaluation metric. Using metrics

that do not well reflect the relationship between forecast errors and the resulting cost in

the Forecast User’s application, can lead to misleading conclusions and non-optimal

(possibly poor) decisions. Knowing the cost-loss relationship of their applications and

to be able to select an appropriate evaluation metric accordingly is important. This

becomes especially important as forecasting products are becoming more complex and

the interconnection between errors and their associated costs more proportional. Apart

from more meaningful evaluation results, knowledge of the cost-loss relationship also

helps the forecast service provider to optimize forecasts and develop custom tailored

forecast solutions for the intended application.

Evaluation of forecast solutions is a complex task and it is usually neither easy nor

recommended to simplify the evaluation process. As a general recommendation, such a

process needs to follow an evaluation paradigm with three principles for an evaluation to be:

1. representative

2. significant

3. relevant

How to setup an evaluation process and achieve these principles is the core of this recom-

mended practices guideline.

In chapter 2 these three main principles are outlined and the general concept of evaluation

uncertainty is explained as this should be the basis for any evaluation task. In chapter 3, the

uncertainty of measurement data collection and reporting is explained as the second base

principle of evaluation and verification tasks. If forecasts are evaluated against data that

inherit errors, results may still show some significance, but may no longer be considered

trustworthy, nor relevant and representative. In chapter 4 metrics for evaluation and verifica-

tion will be conceptualized and categorized in order to provide an issue oriented guideline for
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the selection of metrics in a evaluation framework. The last chapter 5 introduces the concept

of developing such an evaluation framework and provides practical information on how to

maximize value of operational forecasts, how to evaluate benchmarks and trials and new

forecasting techniques or developments. Lastly, recommendations are made for a number of

practical use cases for power industry specific applications.





Chapter 2

Overview of Evaluation Uncertainty

Key Points

All performance evaluations of potential or ongoing forecast solutions have a degree of

uncertainty, which is associated with the three attributes of the performance evaluation

process: (1) representativeness, (2) significance and (3) relevance.

A carefully designed and implemented evaluation process that considers the key

issues in each of these three attributes can minimize the uncertainty and yield the

most meaningful results.

A disregard of these issues is likely to lead to uncertainty that is so high that the

conclusions of the evaluation process are meaningless and therefore decisions based

on the results are basically random.

Uncertainty is an inherent characteristic of the forecast evaluation process. The objective

of the design and execution of a forecast evaluation procedure is to minimize the uncertainty

and thereby reduce its impact on the decisions association with forecast selection or opti-

mization. In order to minimize forecast evaluation uncertainty it is useful to understand the

sources of uncertainty on the evaluation process.

The sources of forecast evaluation uncertainty can be linked to three key attributes of

the evaluation process: (1) representativeness (2) significance and (3) relevance. If any

one of these are not satisfactorily addressed, than an evaluation will not provide meaningful

information to the forecast solution decision process and the resources employed in the trial

or benchmark will essentially have been wasted. Unfortunately, it may not be obvious to the

conductor of a forecast evaluation or the user of the information produced by an evaluation

whether or not these three attributes have been satisfactorily addressed. This section will

present an overview of the key issues associated with each attribute. Subsequent sections of

this document will provide guidance on how to maximize the likelihood that each will be

satisfactorily addressed.

5
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2.1 Representativeness

Representativeness refers to the relationship between the results of a forecast performance

evaluation and the performance that is ultimately obtained in the operational use of a forecast

solution. It essentially addresses the question of whether or not the results of the evaluation

are likely to be a good predictor of the actual forecast performance that will be achieved for

an operational application. These are many factors that influence the ability of the evaluation

results to be a good predictor of future operational performance.

Four of the most crucial factors are:

1. size and composition of the evaluation sample,

2. quality of the data from the forecast target sites,

3. the formulation and enforcement of rules governing the submission of forecasts (some-

times referred to as fairness),

4. availability of a complete and consistent set of evaluation procedure information to all

evaluation participants (sometimes referred to as transparency)

2.1.1 Size and composition of the evaluation sample

The size of the evaluation sample is one of the most important representativeness factors.

The size of the sample is a key factor in determining the extent to which the results are

influenced by random variation, or noise, compared to true differences in forecast skill. The

use of a small sample increases the probability that the conclusions from the evaluation

will be due to noise (random and unrepresentative events) in the sample. For example, the

occurrence of very unusual weather events for a few days in a short sample may dominate

the evaluation results. The predictability of these events is often lower (i.e. higher forecast

errors) than that of typical weather conditions. Therefore, a small sample that contains

such very unusual events may lead to an overestimation of the typical magnitude of forecast

errors. Conversely, a small sample that has no difficult-to-forecast events may lead to an

underestimation of the typical forecast error. However, the performance of the forecasts under

unusual weather conditions may be very important to the user’s application and therefore an

assessment of how different forecast systems perform under these conditions may be very

valuable information to the solution selection process. Thus,there are two key points that

the user should keep in mind when using a small evaluation sample. First, conclusions

from a small sample will always be less reliable (i.e. more uncertain) than those from a

larger sample. Second, the user should make an effort to understand the composition of the

small sample by examining the relationship between the weather conditions in the sample

relative to an estimate of the climatological (i.e. long-term) distribution (e.g. was the sample

dominated by typical conditions or were there one or more atypical events?) for the site or

region and also by examining the forecast error distributions (e.g. were almost all of the
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forecast error magnitudes clustered around the average magnitude or were there a significant

number of outliers?) (see also 5.1.1, 4.1.4, ).

That leads to the question of how large of a sample is adequate? A commonly used target

sample size guideline when gathering data for statistical analysis is 30. If all the sample

points are independent then a sample of 30 provides a reasonable adequate minimization

that sampling noise will impact the conclusions. But the key phrase is that the sample data

points must be independent (uncorrelated) for this guideline to be valid. However, weather

processes are typically highly correlated over time periods of 3 to 4 days. This means that

an adequate sample from a continuous evaluation period should be 3 to 4 times larger than

30 or in other words, 90 to 120.

The composition of an evaluation sample is another key issue. The composition should

be constructed so that all significant modes of variation of the forecast variable (e.g. wind

power production) are included in the evaluation sample. For example if there is a high wind

season and a low wind season then both should have a representative number of cases in the

evaluation sample. However, if this is not practical than at least there should at least be a

representative sample of the most important modes for the application (e.g. high wind season

when the speeds are near cutout or periods when the wind speed is frequently in the highly

sensitive steeply sloped part of the turbine power curve).

2.1.2 Data Quality

The quality of the data used in the forecast evaluation process can be a major source of

uncertainty. The data from the forecast target location is typically used for two purposes: (1)

as training data for the statistical components of each forecast system and (2) evaluation of

the forecast performance. If the data has many quality issues then the representativeness of

both applications is compromised. The quality issues may include: (1) out of range or locked

values, (2) biased values due to issues with measurement devices or location of measurement,

(3) badly or not at all calibrated instruments and (4) values that are unrepresentative of

meteorological conditions because of undocumented outages or curtailments. If a substantial

of data with these issues is used is used in the evaluation process for either of the two purposes,

the results will likely not be representative of the true skill of the forecasting solutions that

are being evaluated.

2.1.3 Forecast Submission Control

A third important factor is the formulation and enforcement of rules for the submission

of forecasts in the evaluation process. This is sometimes noted as a fairness issue and

it is indeed an issue of fairness to the forecast providers who are typically competing to

demonstrate the skill of their system and thereby obtain an award of a contract for their

services. However, from the users perspective it is a representativeness issue. If it is possible

to for some forecasting solution providers to provide forecasts with unrepresentative skill

then the conclusions of the entire evaluation process are questionable. A couple of examples
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can illustrate this point. One is example is a situation in which there is no enforcement of

the forecast delivery time. In this case it would be possible for a forecast provider to deliver

forecasts at a later time (perhaps overwriting a forecast that was delivered at the required time)

and use later data to add skill to their forecast or even wait until the outcome for the forecast

period is known. Although one might think that such explicit cheating is not likely to occur

in this type of technical evaluation, experience has indicated that it is not that uncommon if

the situation enables its occurrence.

A second example, illustrate how the results might be manipulated without explicit

cheating by taking advantage of loopholes in the rules. In this example the issue is that the

evaluation protocol does specify any penalty for missing a forecast delivery and the evaluation

metrics are simply computed on whatever forecasts are submitted by each provider. As a

forecast provider it is not difficult to estimate the difficulty of each forecast period and to

simply not deliver any forecasts during periods that are likely to be difficult and therefore

prone to large errors. This is an excellent way to improve forecast performance scores. Of

course, it makes the results unrepresentative of what is actually needed by the user. Often it

is good performance during the difficult forecast periods that are most valuable to a user.

2.1.4 Process Information Dissemination

A fourth key factor is the availability of a complete and consistent set of information about

the forecast evaluation process to all participants. Incomplete or inconsistent information

distribution can occur in many ways. For example, one participant may ask a question and

the reply is only provided to the participant who submitted the inquiry. This can contribute

to apparent differences in forecast skill that are associated with true differences in the skills

of the solution. This of course results in unrepresentative evaluation of the true differences

in forecast skill among the solutions.

2.2 Significance

Significance refers to the ability to differentiate between performance differences that are

due to noise (quasi-random processes) in the evaluation process and those that are due to

meaningful differences in skill among forecast solutions. Performance differences that stem

from noise have basically no meaning and will not represent the performance that a user will

experience in a long-term operational application of a solution. Real performance differences

on the other hand should be stable and should not change if an evaluation process is repeated,

e.g., one year later. A certain degree of noise is inevitable in every evaluation task but both,

minimization of noise and awareness of the uncertainty it causes are crucial to base reliable

decisions on the evaluation results.

As mentioned above, repeatability is a good practical indication of significance in eval-

uation results. The highest potential for achieving repeatability is the use of a representative

evaluation sample. This means the sample should cover as many potential weather events,
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seasons, and perhaps forecast locations as possible. Otherwise, there is a high probability

that the results will be different for features that are not well represented in the evaluation

sample. Thus, significance is highly related to representativeness and very much depends on

the evaluation sample size and composition.

2.2.1 Quantification of Uncertainty

In addition to noise minimization through the use of representative evaluation data sets, it is

also very useful to quantify the significance (i.e. the uncertainty) of the evaluation results.

Quantification of the uncertainty is important for decision making. For example, if a number

of forecast solutions are evaluated with a specified metric, but their differences are much

smaller than the uncertainty in the result due to e.g. measurement uncertainty, the meaning

of their ranking is actually very limited and should not be used for important decisions.

2.2.1.1 Method 1: Repeating the evaluation task

The simplest approach to estimate evaluation uncertainty would be to repeat the evaluation

task several times on different data sets. This approach is often effective, because the variation

or uncertainty of the evaluation results is typically attributable largely to their dependence

on the evaluation data set and therefore results often vary among different evaluation data

sets. However, since evaluation data sets are usually very limited, this is often not a feasible

approach.

2.2.1.2 Method 2: Bootstrap Resampling

A simple alternative method is to simulate different data sets, through the use of bootstrap

resampling process. In this approach an evaluation data set of the same length as the original

data set is drawn from the original data set with replacement and the evaluation results are

derived on this set. By repeating this "N" times, "N" different evaluation results become

available and their range can be seen as the evaluation uncertainty. Alternatively, parametric

testing can also provide information on the significance of evaluation results. Typically two

sample paired t-tests applied on the sets of error measures for each event provide a good

estimate of the significance of the results. Diebold et al. [5] proposed a variation of this t-test

to account for temporal correlations in the data and can therefore provide a more accurate

significance quantification. Messner et al. [6] also describes different parametric testing or

bootstrap resampling approaches that can be employed to quantify the evaluation uncertainty.

If it is found, that the forecast that is identified as the "best" an evaluation process does not

exhibit significantly better performance than some of the other benchmark participants, the

final selection of forecast solutions should only consider differences among forecast solutions

that are significant.
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2.3 Relevance

Relevance refers to the degree of alignment between the evaluation metrics used for an

evaluation and the true sensitivity of a users application(s) to forecast error. If these two

items are not well aligned then even though an evaluation process is representative and the

results show significant differences among solutions, the evaluation results may not be a

relevant basis for selecting the best solution for the application. There are a number of issues

related to the relevance factor.

1. Best Performance Metric

First, the selection of the best metric may be complex and difficult. The ideal approach

is to formulate a cost function that transforms forecast error to the application-related

consequences of those errors. This could a monetary implication or it might be another

type of consequence (for example a reliability metric for grid operations). However, if

it is not feasible to do this, another approach is to use a matrix of performance metrics

that measure a range of forecast performance attributes.

2. Multiple Performance Metrics

If there is a range of forecast performance attributes that are relevant to a users

application, it most likely will not be possible to optimize a single forecast to achieve

optimal performance for all of the relevant metrics. In that case, the best solution is to

obtain multiple forecasts with each being optimized for a specific application and its

associated metric.

3. Multiple Forecast Solutions

Another type of issue arises when the user intends to employ multiple (N) forecast

solutions and create a composite forecast from the information provided by each

individual forecast. In this case it may be tempting to select the best N performing

forecasts in the evaluation according to the metric or metrics identified as most relevant

by the user. However, that is not the best way to get the most relevant answer for the

multiple provider scenario. In that case the desired answer is to select the N forecasts

that provide the best composite forecast. This may not be the set of N forecasts that

individually perform the best. It is the set of forecasts that best complement each other.

For example, the two best forecasts according to a metric such as the RMSE may be

highly correlated and provide essentially the same information. In that case, a forecast

solution with a higher (worse) RMSE may be less correlated with the lowest RMSE

forecast and therefore be a better complement to that forecast.



Chapter 3

Measurement Data processing and Con-

trol

Key Points

• Measurements from the forecast target facilities are crucial for the forecast

production and evaluation process and therefore much attention should be

given to how data is collected, communicated and quality controlled

• Collection and reporting of measurement data requires strict rules and formats,

as well as IT communication standards in order to maximize its value in the

forecasting process; standards and methods for collecting and reporting data

are available from multiple sources referenced in this section

• An effective quality control process is essential since bad data can seriously

degrade forecast performance; standard quality maintenance and control pro-

cedures have been documented and some are noted in this section

In any evaluation the measurements or observations are alpha and omega for trustworthy

results. For this reason, this section is dedicated to the importance of data collection,

verification and the identification of the measurement uncertainty. In the evaluation of wind

power forecasts, power data is most important but also meteorological measurements are often

provided to the forecast providers as input to improve their forecast models. Furthermore,

failure, service periods, curtailment and other disturbances in the power measurements can

have significant impact on the results of an evaluation. The following section deal with these

aspects and provide recommendations for a correct handling of such data for the evaluation

phase.

11
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3.1 Uncertainty of instrumentation signals and measurements

All data are derived from different measurement devices and depending on the quality

of these devices the measurements can deviate from the reality to a certain degree. In

fact, measurement errors can never be avoided completely and can potentially affect the

significance of evaluation results. Therefore, it is crucial to assure and maintain specific

quality requirements for the measurement devices to obtain data of good quality and thus

keep the measurement uncertainty to a low level. This will not only improve the significance

of evaluation results but also assure an optimum quality of forecasts that use the measurements

as input.

For power data, the measurement quality is usually ensured by existing grid code standards

that are verified in the commissioning phase and are serviced as part of the turbines SCADA

system maintenance.

Recommendations on minimum technical requirements is going beyond the scope of this

recommended practice guideline. For anyone intending to collect and process bankable wind

measurements, the following standards and guidelines provide a basis for the adaptation into

real-time operational applications :

1. the International Electrotechnical Committee (IEC)

2. the International Energy Agency (IEA)

3. the International Network for Harmonised and Recognised Wind Energy Measurement

(MEASNET)

4. United States Environmental Protection Agency (EPA)

If these requirements are fulfilled, the measurement error is usually negligible compared

to other sources of uncertainty in the evaluation procedure.

• For relevant evaluation results, minimum standards for measurement data precision

and quality have to be ensured and maintained.

3.2 Measurement data reporting and collection

Once wind farms are operational and the production data are measured it is important to

collect, store and report them properly, which requires strict rules and formats, as well as IT

communication standards. Standard protocols for collecting and reporting power data are

usually enforced by jurisdictional grid codes. There are however a number of aspects that are

not covered in the grid codes that are essential for verification or evaluation of forecasting

tools. This section will discuss the main aspects to be considered for any measurement

data collection and archiving. In the following we limit the description for the purpose of

verification or evaluation of forecasts in a real-time operational framework or a forecast test

framework.
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3.2.1 Non-weather related production reductions

Raw power production data contains a number of non-weather related reductions that need

consideration in the collection or archiving of measurement data, such as

• failure of turbines in a wind park (availability)

• scheduled and non-scheduled maintenance

• curtailment

• reductions due to environmental constraints (noise, birds, ...)

The so-called Net to Grid signal is often disturbed by such technical constraints that are

usually not part of the wind power forecasting task. Therefore, to evaluate the actual forecast

quality such events have to be filtered in the evaluation. Especially in the case of curtailment,

the forecast user needs to decide whether the target parameter is the real power production

or available power. If it is the latter, data with curtailment should be removed from the

evaluation data set, because errors are not meaningful for the forecast performance, unless

the curtailments are predicted as well.

• To receive relevant results, remove events from the evaluation data set that are effected

by non-weather related production constrains unless these are to be predicted as well.

3.2.2 Aggregation of measurement data in time and space

Often, temporally or spatially aggregated data (averages, sums) are more useful in power

applications than instantaneous signals. The aggregation level, or if no aggregation over

time is carried out, for example, if hourly values are provided that are not hourly averages

of higher resolution data, but instantaneous values taken at the start of the hour, this should

be communicated to the forecast provider to assure optimum forecast performance for the

intended application. Furthermore, it is strongly recommended to aggregate the measure-

ment data according to the intended applications before comparing, analysing and verifying

forecasts. Otherwise, the evaluation results might not be relevant for the forecast user.

When aggregating measurement data over parks, regions, control zones or other aggrega-

tion levels, it is important to consider non-weather related events as discussed in Section 3.2.1.

In particular

• Non-reporting generation units

• IT communication failures or corrupt signals

have to be identified and reported and the aggregated data should be normalized accordingly.

Such failures are impossible to predict by the forecast vendor and should therefore not be

part of the evaluation process.
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• For relevant results, average the measurement data over a time frame that is also useful

for the intended application.

• For representative results, non-weather related events should be identified and the

aggregated signals normalized accordingly.

3.3 Measurement data processing and archiving

In any real-time environment, measurements should be delivered as is, but flagged, if they

are considered wrong (1) at the logger level and (2) after a quality control before employing

measurements in a forecast process.

Archiving data is dependent on the way the further processing of the data is planned. In

most cases, it is useful to archive data in a database. There are many different structures of

data bases available today. Such structural decisions are out of the scope of this guideline.

Nevertheless, there are general considerations when planning and designing a database for

operational data. While measurements are available only at one specific time, forecast data

have overlapping time periods and need to be separated from measurement data. At the

design level it is necessary to consider the following aspects.

1. single or multiple time points per measurement signal in database

2. flagging at each data point and

(a) possibility to overwrite corrupt data in database

(b) possibility to add correct data point in database

(c) knowledge of time averaging level of data signal

3. single or multiple measurement points per wind farm

4. ability to expand and upscale the database: expansion with increasing number of

measurement points/production units

5. importance of access to historical data

The database dimensions and setup of tables has to take such decisions and requirements

into consideration.

3.4 Quality assurance and quality control

Quality of data is a crucial parameter for any real-time forecasting system. If the data that real-

time forecasts are based on are corrupt or misleading, the result can be worse than not having

measurements or observations at all. Therefore, any real-time system using measurements

needs a quality control mechanism to discard bad data. However, bad, corrupt or misleading
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data signals can have an almost unlimited amount of reasons, which means that specific limits,

operating ranges and validity checks need to be established when dealing with observational

data. While this is critical in real-time environments, the quality of measurement data in

the verification phase is equally important. For example, if a wind power forecast is verified

against observations from a wind farm and a maintenance schedule or a curtailment from

the system operator is not filtered out or marked in the data time series, then the result may

be bad for the wrong reason. Trustworthiness in data can only be a result of control and

maintenance of both the hardware and the corresponding software and data archiving. The

following sections outline the most important parts of a quality control that should be carried

out regularly in real-time environments and prior to verification or evaluation exercises.

• For relevant evaluation results, the data has to be of high quality, and faulty or corrupt

data has to be detected, flagged and disregarded for the evaluation process.

3.5 Filtering processes and Data Preparation

The filtering process and data preparation are crucial whenever dealing with measurements or

observational data in the evaluation process. A number of parameter have been identified as

being important to consider in the preparation phase of any verification/evaluation. Messner

et al. [2018]) recommended the following requirements:

• Data set representation and composition:

The selected data set should be representative for the application and forecasts should

be compared with exactly the same data sets. Results of different locations, seasons,

lead times etc. are in general not comparable. The composition should be constructed

so that all significant modes of variation of the forecast variable (e.g. wind power

production) are included in the evaluation sample. For example if there is a high wind

season and a low wind season then both should have a representative number of cases

in the evaluation sample. However, if this is not practical than at least there should at

least be a representative sample of the most important modes for the application (e.g.

high wind season when the speeds are near cutout or periods when the wind speed is

frequently in the highly sensitive steeply sloped part of the turbine power curve).

• Data set length:

The size of the evaluation sample is one of the most important representativeness and

significance factors. The size of the sample is a key factor in determining to what

extent results are influenced by random variation, or noise, compared to true predictive

performance. The use of a small sample increases the probability that any conclusions

reached from the evaluation will be due to noise (random and unrepresentative events)

in the sample. For example, the occurrence of very unusual weather events for a few

days in a short sample may dominate the evaluation results.
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That leads to the question of how large of a sample is adequate? A commonly used

target sample size guideline when gathering data for statistical analysis is 30. If all

the sample points are independent then a sample of 30 provides a reasonable adequate

minimization that sampling noise will impact the conclusions. But the key phrase is

that the sample data points must be independent (uncorrelated) for this guideline to be

valid. However, weather processes are typically highly correlated over time periods of

3 to 4 days. This means that an adequate sample from a continuous evaluation period

should be 3 to 4 times larger than 30 or in other words, 90 to 120 days.

• Data set consistency:

For a fair evaluation of a forecast, whether against other forecasts, measurements or

persistence, it is very important to use the same data set to derive the evaluation results.

If a certain forecast is not available for a specific time, this time has to be disregarded for

all the other forecasts or persistence as well. Else, if forecasts are for example missing

for days that are particularly difficult to predict, they would in total perform much better

than forecasts that are expected to have high errors at these days. This also applies

for curtailment data. It is important to evaluate a forecast against the weather related

performance and remove all non-weather related impacts that are out of the forecasters

control. Especially, if forecasts are evaluated against a persistence forecast, especially

in minute- or hour scale forecasts, where models are adopted to measurements that may

contain curtailment or failures due to turbine unavailability or communication issues,

the corresponding persistence need to be computed accordingly. If this is not done,

the forecast performance of the persistence will be overestimated and the performance

of the forecast underestimated.



Chapter 4

Assessment of Forecast Performance

Key Points

• All performance evaluations of potential or ongoing forecast solutions have a

degree of uncertainty

• The uncertainty is associated with three attributes of the performance evalu-

ation process evaluation process: (1) representativeness, (2) significance and

(3) relevance

• A carefully designed and implemented evaluation process that considers the

key issues in each of these three attributes can minimize the uncertainty and

yield the most meaningful results

• A disregard of these issues is likely to lead to uncertainty and/or decisions

based on unrepresentative information

The relevance of different aspects of forecast performance depends on the user’s applica-

tion. For instance, one user may be concerned with the size of typical forecast errors, while

another my only be concerned with the size and frequency of particularly large errors. There

are a wide range of error metrics and verification methods available to forecast users, but

their relationship to different attributes is not always clear. This chapter deals with the is-

sues around evaluating specific attributes of forecast performance including metric selection,

verification and the use of some specific metrics in forecast optimization.

4.1 Forecast Attributes at Metric Selection

Forecast users may be interested in either a single attribute, or a range of attributes. When

evaluating forecasts to either track performance changes or discriminate between different

17
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forecasts, it is important to consider those attributes relevant to the forecasts intended use.

Where a forecast is used in multiple applications there is not guarantee that these attributes

will be aligned and it may be necessary to compromise or procure multiple forecast products.

Selecting an appropriate metric, or set of metrics, is a key requirement in order to to produce

a representative evaluation forecast performance which is relevant to the forecast’s end use.

Quantitative evaluation methods are usually the core of the evaluation framework since

they allow to objectively rank different forecast models. Typical choices of quantitative

metrics are the (root) mean squared error, the mean absolute error or the quantile score

(see [6] for details) for continuous forecasts and various quantities derived from contingency

tables for forecasts of binary forecasts.

As emphasized in Section 5.1.4, the selection of metrics should be informed by the

forecast user’s intended use, and if a forecast is intended to be used for multiple applications,

different basic metrics may be applied and merged into a weighted sum. Below, a range of

forecast attributes and their relation to different evaluation metrics are discussed.

4.1.1 Typical Error Metrics

The most common error metrics used in the wind industry summarize ‘typical’ error by aver-

aging the absolute value of errors, or squared errors, often normalized by installed capacity.

Such metrics are simple to produce and give a high-level view of forecast performance. They

give equal weighting to all errors included, which may be appropriate if the forecast is used

to inform decisions at any time, as opposed to only when a particular event is predicted.

In energy trading, for example, the forecast is used to inform decisions for every trading

period and the cost implication of a forecast error is usually proportional to the error. In this

case, absolute value of the error is directly related to the forecast’s end-use so mean squared

error would not be as informative as mean absolute error.

However, average error metrics hide some information which may be of interest. For

example, a forecast with mostly small errors and occasional large errors could return a similar

mean score to one with all moderate errors. In some cases this may not be an issue, but some

users may prefer to experience fewer large errors even if that means fewer small errors too.

Examples of typical error metrics are discussed in section 5.1 and especially in section

5.1.1.

4.1.2 Outlier/Extreme Error

Another important attribute is the prevalence of large errors. Some applications aim to prepare

for large errors, such as managing reserve energy or other risk management. Calculating

metrics based on historic errors is more challenging than for ‘typical’ errors as large errors

are more effected by specific situations. It is recommended that different root causes of large

errors are considered separately, and positive and that negative errors are treated separately.

For example, large errors at a single wind farm during a period of high wind speed may

be caused by high speed shut down, but are unlikely if the wind speed is only just above
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rated. If considering aggregated production from multiple wind farms, large errors may be

caused by wind speed forecast errors in the vicinity of large areas of concentrated capacity.

4.1.3 Empirical Error Distribution

The empirical distribution of past forecast errors gives a detailed picture of how frequent

errors of different sizes have been. It can be useful to examine the distribution of errors

for specific situations, such as when power was forecast to be 70±2%, as the shape of the

distribution will depend on power level, particularly for individual wind farms.

4.1.4 Binary or Multi-criteria events

Some attributes of forecast performance relate to the prediction of events such as ramps (or

particular rate and duration) which may span multiple lead-times and spatial scales. Fur-

thermore, events typically have multiple attributes, such as timing and magnitude. Different

attributes may be of more or less interest depending on the use case for the forecast. In these

cases, average error metrics may not be representative of the desired forecast attribute.

For example, ramp rate may be of most importance to one user, whereas the timing or

ramp magnitude may be of more importance to another. This effect is illustrated in Figure 4.1.

Timing or phase errors are penalized heavily by mean absolute error so the forecast which

best predicted both the ramp rate and magnitude appears worse by this measure. A similar

principal applies to events such as the duration of high or low power periods. In general,

average error metrics favour ‘smooth’ forecasts rather than those which capture the precise

shape of specific events.

Contingency tables provide a framework for quantifying the prediction of categorical

events, which can be defined to match the user’s decision making process. For example,

the user may define a particular ramp event with some tolerance for phase and level error

and then evaluate the performance of a particular forecast solution at predicting such events.

There are four possibilities for each predicted and/or actual event: a true positive (hit), true

negative (correct negative), false positive (false alarm) or false negative (miss). From these,

a range of metrics can be calculated and used for comparison with other forecast systems.

Furthermore, if the cost implications of decisions based on the forecast are known (or can be

estimated) then the relative value of forecasting systems may be calculated.

Examples on how to verify outliers can be found in section 5.1, and 5.5.2.1.

4.1.5 Prediction Intervals and Predictive Distributions

Prediction intervals may be supplied to provide situational awareness or to information or

quantitative risk management. These intervals predict an upper and lower bound which the

observation will fall between with some probability. It is therefore an important attribute that

observations do in fact fall between the interval with the prescribed frequency. This property

is call ‘reliability’ and can by evaluated by simply counting the frequency of observations
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Figure 4.1: Examples of different types of ramp forecast error. Actual power is shown as solid black lines,

forecasts are colored dashed lines. From left to right: phase or timing error, level error and ramp rate error.

The mean absolute error (MAE) for each forecast is shown above the plots. Despite being the only forecast the

correctly predict the ramp rate and duration, the forecast with a phase error has the largest MAE.

within and outside the interval. A more accurate forecasts with a narrower interval is said to

be ‘sharp’ and provides greater confidence than a wide interval, but must be reliable in order

to inform risk-based decision making. Therefore, prediction intervals should be evaluated

following the principal of sharpness subject to reliability.

A predictive distribution is a smooth probability density function for the future value. It

provides full information about probability of all possible value ranges rather than a single

interval. In this case the principal of sharpness subject to reliability still applies but sharpness

and reliability needs to be evaluated for a range of probability levels.

In quantitative decision making under uncertainty the optimal decision is often a quantile,

i.e. the value that is forecast to be exceeded with some probability. For example, if the cost of

taking precautionary action is 𝐶 to protect against an uncertain adverse effect with potential

loss 𝐿, then the precautionary action should be take in the probability of the adverse effect

happening is greater than the cost-loss ratio 𝐶/𝐿.

In applications of wind power forecasting, the adverse event could be exposure to im-

balance costs, or holding insufficient energy reserves. In most cases, the values of 𝐶 and 𝐿

will be changing continuously and the decision maker will be aiming to select a future value

of energy production which will be achieved with some probability 𝑝 = 𝐶/𝐿. Therefore, it

is necessary to have access to the full predictive distribution in order to make an appropri-

ate decision. Where the cost-loss ratio is known, the relative economic value of different

forecasting systems can be calculated.
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4.2 Probabilistic Forecast Assessment Methods

Probabilistic forecast evaluation is a complex topic. There are a number of classical metrics,

just like for deterministic forecasts. However, the evaluation of probabilistic forecasts places

greater importance on an end-user’s knowledge of a cost function that provides a good

indication of how well the forecast performance has met the requirements of the user’s

application. (see 5.1.4).

The considerations from chapter 2 on the performance evaluation and it’s inherent un-

certainty are even more important here. The three attributes (1) representativeness, (2)

significance and (3) relevance are equally important to consider when setting up evaluation

of probabilistic forecasts.

In same cases, it might be best to only use a graphical inspection of how well observations

lie within forecast intervals. This can then be extended to an interval evaluation to provide

objective values to the visual impression from the graph. This is similar to the “dichotomous

event evaluation” described in 5.1.2.1 for predefined events. These scores can also be used

for probabilistic/uncertainty forecasts, if the application is about how well the probabilistic

forecasts or forecast intervals have captured the observations.

It is therefore important to follow the recommendations in the “best practice recommen-

dations” 5 on how to built up a evaluation platform that reflects the purpose of the forecasts

an provides and incentive to the forecast provider to match these criteria with the appropriate

methods.

Therefore, the following description of metrics only provide a set of possible tools that can be

used for the evaluation of probabilistic forecasts and the user must select the most appropriate

set depending on the characteristics of the user’s application and objectives of the forecast

evaluation.

4.2.1 Brier Scores

The Brier score [8] is probably the most prominent and widely-used probabilistic forecast

performance metric. It is a useful measure for a general assessment of the performance of

probabilistic forecasts. However, the formulation of the basic Brier makes it suitable only for

the evaluation of probabilistic forecasts of binary events (i.e. occurrence or non-occurrence

of a defined event)

The Brier Score (BS) is the equivalent to the mean-squared error (MSE) for probabilistic

forecasts with the same limitations as for deterministic forecasts. That means, the Brier Score

is sensitive to the climatological frequency of events in the sense that the rarer an event, the

easier it is to get a good BS without having any real skill. The BS is defined as,

𝐵𝑆 =
1

𝑁

𝑁∑

𝑖=1

( 𝑓𝑖 − 𝑜𝑖)
2 (4.1)

where 𝑓𝑖 is the forecast probability at time i, o is the observation at time i, and N is the
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number of forecasts. The forecast probabilities range in value between 0 and 1, the observed

values are either 0, if the event does not occur, or 1, if the event occurs.

Equation 4.1 is bound mathematically to values between 0 and 1. A lower Brier score, similar

to the MSE, indicates greater accuracy. The maximum squared error is 1, because all squared

errors will lie between 0 and 1. A perfect accuracy is reflected in the Brier score with 0, i.e.

there is no difference between scores of an event and someones probabilistic predictions for

those events. The opposite, i.e. a Brier score of 1, reflects perfect inaccuracy, which means

that there are probabilities of 0 given to events that occur and probabilities of 1 to events that

do not occur.

In order to gain further insight into the behavior of the Brier score, it can be decomposed

algebraically into three components:

𝐵𝑆 = 𝐶𝐴𝐿−𝑅𝐸𝑆 +𝑈𝑁𝐶 (4.2)

where, the CAL is the Calibration and is also sometimes referred to as the "reliability"

, RES is the resolution, UNC is the uncertainty. The first components use the predicted

probability to determine the performance of the forecast’s ability to predict an event occurring

with the provided probabilities as well as the observed frequency of that event, binned by

forecast probability.

In [7], these three components are explained in a way that is easy to understand and relate

to applications:

• CAL is a squared function of forecasted probability ( 𝑓𝑝) and the mean probability

(𝑝) and measures whether the forecasted values consistently represent the frequencies

with which events occur (i.e., is the forecasted probability too large or too small on

average?). For example, does the event occur 30% of the time when a forecast of 0.30

is issued? Specifically, CAL measures the difference between the actual frequency of

occurrence and the forecast prediction. This is also referred to as the "reliability" of a

probabilistic forecast.

• RES is a squared function of (𝑝) and () and measures how much the frequency of

event occurrence varies among the forecasts. It measures the ability of the forecast

to distinguish between event and non-event. For example, if the average frequency of

event occurrence across all forecasts is 0.50, the relative frequency of occurrence (𝑝)

should be much smaller for events, when the forecast is 0.10 (low likelihood of event)

and much larger when the forecast probability is 0.90 (high likelihood of event). Higher

RES scores indicate more skill and therefore appears in equation (4.1) with a negative

sign. In the worst case, when the same probability (for example, the climatological

probability) is always forecast, the resolution is zero.

• UNC is a function of () only and does not specifically measure how well the forecasts

predict the event. Instead, UNC is an important measure of the difficulty of the

forecasting situation. Large values of UNC (e.g., when the event is very rare) indicate
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that the forecasting situation is more difficult. It is inappropriate to compare forecasts

for systems with significantly different UNC values.

In [7] a very useful list of specific questions that the Brier score answers have been listed:

1. Brier Score (BS) answers how accurate the probability forecasts are

2. Calibration (CAL) answers how well does the conditional relative frequency of occur-

rence of the event match a situation?

3. Resolution (RES) answers how well does the forecast separate events according to

whether they occur or dont occur

4. Uncertainty UNC) answers how difficult/uncertain is the forecast situation

4.2.2 Ranked Probability (Skill) Score (RP(S)S)

The Ranked Probability Score (RPS) and Ranked probability Skill Score [9] is widely used for

multi-category probability forecasts that have a magnitude order to them (such as generation

forecasts). The RPS is the multi-category extension of the Brier score, and the “Skill” part

refers to the skill relative to a reference forecast. The RPSS is the same calculation as the

RPS, except that the comparison is to a one reference forecast (category).

In other words, the RPS measures cumulative squared error between categorical forecast

probabilities and the observed categorical probabilities, and the RPSS measures the error

relative to a reference (or standard baseline) forecast (climatology, persistence, a reference

forecast). The observed categorical probabilities are 100% in the observed category, and 0%

in all other categories [9].

𝑅𝑃𝑆 =

𝑁𝑐𝑎𝑡∑

𝑐𝑎𝑡=1

(𝑃𝑐𝑢𝑚𝐹 (𝑐𝑎𝑡) −𝑃𝑐𝑢𝑚𝑂 (𝑐𝑎𝑡) (4.3)

Where 𝑁𝑐𝑎𝑡 = 3 for tercile forecasts. The “cum” implies that the summation is done first for

cat 1, then cat 1 and 2, then cat 1 and 2 and 3 [9].

The higher the RPS, the poorer the forecast. RPS=0 means that the probability given to

the category that was observed was 100%. The RPSS is based on the RPS for the forecast

compared to the RPS For a reference forecast such as one that simply gives climatological

probabilities.

RPSS > 0 when RPS for actual forecast is smaller than RPS for the reference forecast.

𝑅𝑃𝑆𝑆 = 1−−
𝑅𝑃𝑆forecast

𝑅𝑃𝑆observation

(4.4)

The RPSS is made worse by three main factors [10]:

(1) Mean probability biases

(2) Conditional probability biases (including amplitude biases)
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(3) The lack of correlation between forecast probabilities and obs

(1) and (2) are calibration factors and (3) involves discrimination. The tercile category

system can be seen as a two category system if the two tercile boundaries are considered one

at a time: below normal vs. not below normal above normal vs. not below normal.

4.2.3 Reliability Measures

There are a number of reliability measures that measure or depict the same attribute: the

agreement between forecasted probabilities and observed frequencies.

The differences and similarities of the various measures, rank historgram, reliability diagrams

and calibration diagrams are explained and discussed in the following sections, so that the

use and benefits of combining some of these measures become clear.

It is also worth noting that the CAL term in the Brier Score (BS) is basically a quantifi-

cation of what is seen in these diagrams.

4.2.3.1 Rank Histogram

Rank histograms measure the consistency and reliability and assumes that the observation is

statistically indistinguishable from the ensemble members.

The rank histograms are developed by ranking the N ensemble members from lowest to

highest and identify the rank of observation with respect to the forecasts. Figure 4.3 show

typical distributions and their characteristics with respect to their skill.

Figure 4.2: One rank histograms ©[10]

It is important to note that the flat rank histogram does not necessarily indicate a skillful

forecast. Rank histograms show conditional/unconditional biases, but does not necessarily

provide a full picture of the skill, because it[10]:

• only measures whether the observed probability distribution is well represented by the

ensemble
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Figure 4.3: Examples of a rank histograms ©[10]

• does NOT show sharpness climatological forecasts are perfectly consistent (flat rank

histogram) but not useful

4.2.3.2 Reliability Diagram

The reliability diagrams tell how well predicted probabilities of an event correspond to their

observed frequencies.

The reliability diagram plots the observed frequency against the forecast probability, where

the range of forecast probabilities is divided into K bins (for example, 0-5%, 5-15%, 15-25%,

etc.). The sample size in each bin is often included as a histogram or values beside the data

points [12].

The characteristics of the reliability is indicated by the proximity of the plotted curve

to the diagonal. The deviation from the diagonal gives the conditional bias. If the curve

lies below the line, this indicates over-forecasting (probabilities too high); points above the

line indicate under-forecasting (probabilities too low). The flatter the curve in the reliability

diagram, the less resolution it has. A forecast of climatology does not discriminate at all

between events and non-events, and thus has no resolution. Points between the "no skill" line

and the diagonal contribute positively to the Brier skill score. The frequency of forecasts

in each probability bin (shown in the histogram) shows the sharpness of the forecast [12].

Figure 4.4 show this principle and Figure 4.5 show typical examples of reliability diagrams

for various forecast flaws.

The reliability diagram is conditioned on the forecasts (i.e., given that an event was

predicted, what was the outcome?), and can be expected to give information on the real

meaning of the forecast. It is a good partner to the ROC, which is conditioned on the

observations. Some users may find a reliability table (table of observed relative frequency

associated with each forecast probability) easier to understand than a reliability diagram.
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Figure 4.4: Connection between rank histograms and reliability diagrams ©[12]

4.2.4 Calibration Diagram

The calibration diagram provides insight into how well calibrated a probabilistic forecast

is and is a complementary metric to the Brier scores (4.2.1 and the Relative Operating

Characteristics (ROC) curve (4.2.5). It represents a basic requirement for a probability

forecast to be useful [7]. In mathematical terms, it depicts the degree of agreement between

the relative frequency of occurrence of an event and the forecasted probability of the event.

A calibration diagram presents pairs of forecast probabilities and relative frequencies of

occurrence of an event of interest (e.g., a ramp), with the forecast probabilities represented

on the x-axis and the observed relative frequencies on the y-axis.

A calibration diagram is created by first sorting the probability forecasts into probability

categories. For example, the categories might include all forecasts with values between 0

and 0.10, 0.10 and 0.20, 0.20 and 0.30, and so on. Then the observed relative frequency of

the event occurrence can be computed for each category by counting the number of times

when the event occurred in each category and dividing by the number of forecasts in that

category.

4.2.5 Event Discrimination Ability: Relative Operating Characteristic (ROC)

This metric shows a probabilistic forecast’s ability to predict the occurrence of events and

non-occurence non-events.

In the ROC diagram the performance of forecasts at different probability thresholds is

visualised. One important aspect of the ROC is that it ignores calibration of the forecasts.

That is, a poorly calibrated forecast will not be penalized by the ROC. Thus, it is important

to pair the ROC evaluation with an evaluation of forecast calibration, such as the calibration

diagram, which is discussed in the next section.
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Figure 4.5: Examples of reliability diagrams. The left upper and lower figure correcpond to the histograms for

over- and underdispersive ditributions in Figure 4.3. ©D. Hudsen, “Ensemble Verification Metrics” Presentation

at ECMWF Annual Seminar[10]

The ROC is based on computing two categorical statistics (see 5.1.2.1):

1. the Probability of Detection (POD), Hit Rate (HR) or true positive rate (TPR)

2. the False Alarm Rate (FAR) or False Positive Rate (FPR)

The ROC curve is created by plotting the true positive rate (TPR) or the probability of

detection (POD) against the false positive rate (FAR) or false alarm rate (FAR) at various

thresholds. The true-positive rate is also known as sensitivity, recall or probability of

detection in machine learning. The false-positive rate is also known as probability of false

alarm and can be calculated as (1 specificity) [13].

Figure 4.6 shows how to generate a ROC curve. The orange line represents a forecasting

system with little skill, the green with moderate (better) skill and the blue line a forecasting

system with reasonable skill.

As shown in Figure 4.6, when the ROC curve falls below the diagonal line the forecasts are

random classifiers, or in other words have no skill according to this metric. The blue line

shows a good, or better forecast skill, where the curve is pushed up towards in the upper left

corner (TPR = 1.0). The area under the ROC curve provides a useful measure of forecast

skill[13]).
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Figure 4.6: Example of a “Relative Operating Curve” (ROC) curve ©Wikipedia [13]

It can also be thought of as a plot of the power as a function of the Type I Error of the

decision rule (when the performance is calculated from just a sample of the population, it

can be thought of as estimators of these quantities).

The ROC curve is thus the sensitivity or recall as a function of fall-out.

In general, if the probability distributions for both detection and false alarm are known, the

ROC curve can be generated by plotting the cumulative distribution function (area under the

probability distribution from −∞ to the discrimination threshold) of the detection probability

in the y-axis versus the cumulative distribution function of the false-alarm probability on the

x-axis[13].

4.2.6 Uncertainty in Forecasts: Rény Entropy

General forecast metrics such as MAE and RMSE do not measure the uncertainty of the

forecast and are only considered unbiased, if the error distribution is Gaussian, which is

seldome the case. In order to define this, and compare it with uncertainty forecasts, it is

recommended to use the Rény entropy, defined as the variation of wind or solar forecast

errors in a specified time period [7] (chapter 6 ).

The Rényi entropy is defined as:

𝐻𝛼 (𝑋) =
1

1−𝛼
𝑙𝑜𝑔2

𝑛∑

𝑖=1

𝑝𝛼
𝑖

where 𝛼 (where 𝛼 > 0 and 𝛼 ≠ 1) is the order of the Réényi entropy, which allows to

create a spectrum of Réényi entropies with 𝑝𝑖 being the probability density of the i discrete
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section of the distribution. Large values of 𝛼 favor higher probability events, while smaller

values of 𝛼 weigh all instances more evenly. The value of 𝛼 is specified by the metric user.

4.3 Metric-based Forecast Optimization

Once the most important attributes of a forecasting system and an evaluation metric or matrix

has been decided, it may be possible to optimize the forecasting system to have desirable

properties. Many forecasting solutions are tuned/optimized for specific performance criteria

either at the post-processing stage (conversion of weather forecasts to power forecasts) or even

in the numerical weather models themselves. For example, many statistical post-processing

techniques allow the user to specify whether to minimize (root) mean squared error or mean

absolute error. The former is implicit in ordinary lest squares, a widely used method for

estimating the parameters of linear models or methods that are based on maximum likelihood

estimation assuming Gaussian (or ‘Normally’) distributed errors. The latter has no closed

form solution for estimating linear models so requires the application of numerical methods

to solve.

It is recommended that the desired properties of a forecasting solution are considered

from the outset and are known to those responsible for the solution’s development and

implementation.





Chapter 5

Best Practice Recommendations

Key Points

The recommendations in this section are based on the following set of principles:

• Verification is subjective

it is important to understand the limitations of a chosen metric

• Verification has an inherent uncertainty

due to its dependence on the evaluation data set

• Evaluation should contain a set of metrics

in order to measure a range of forecast performance attributes

• Evaluation should reflect a cost function

i.e. the metric combinations should provide an estimate of the value of the

solution

In this last chapter, the principles developed in the previous chapters are brought to the

application level. In other words, the somewhat theoretical considerations from the previous

chapters are now applied to real-world problems. In the second chapter 2, the concept

of forecast evaluation uncertainty was introduced with the three attributes “representative”,

“significant” and “relevant” to help minimize this type of uncertainty in the evaluation. The

following chapter 3, introduced the concept of measurement uncertainty with the associated

uncertainty in the evaluation process and how to minimize the errors in the evaluation due to

this type of uncertainty. In the previous chapter 4 the performance assessment was described

in general terms and with examples that are relevant for all types of evaluation in the power

sector.

31
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5.1 Developing an Evaluation framework

Key Points

The construction of a comprehensive evaluation framework is an alternative to a

one-metric forecast evaluation approach and can be an effective way to mitigate the

"relevance" issues associated with the tuning (optimization) of forecasts to target

metrics that are not optimal indicators of value for an end user’s application.

The “typical forecasting task” is defined in this context as forecasts generated to fulfill

operational obligations in electric system operation, trading and balancing of renewable

energy and in particular wind power in power markets. There are certainly many other tasks

and applications of weather and power forecasts in the power industry that can also benefit

from the following best practice recommendations. However, the primary target for the

following recommendations is the evaluation of forecasts for these particular applications.

Section 5.2 deals with the evaluation to maximize value from operational forecasts, section

5.3 with the evaluation of trials and benchmarks and in the use cases section 5.5 there are

example evaluations for energy trading and balancing, power ramps and reserve.

5.1.1 Analyses of Forecasts and Forecast errors

In this discussion, forecast errors are defined as forecast minus observation ( 𝑓 𝑐−𝑜𝑏𝑠). Errors

in forecasting are inevitable. The primary objective is, of course, to minimize the magnitude

of the error. However, a secondary objective may be to shape the error distribution in ways

that are beneficial to a specific application. A direct and deep analysis of the prediction errors

can provide considerable insight into the characteristics of forecast performance as well as

information that can allow users to differentiate situations in which forecasts are likely to be

trustworthy from those that are likely to produce large errors.

The construction of a frequency distribution of errors (also referred to as density functions

or probability density functions) is an effective way to obtain insight about forecast error

patterns. These are created by sorting errors and visualizing their distribution as e.g.,

• (probability) density curve

• histogram (frequency bars)

• box plot

All of these chart types show the same basic information but with different degrees of detail.

Density curves provide the most detail since they depict the full probability density function

of the forecast errors. Histograms provide an intermediate level of detail by showing the

frequency of a specified number of error categories. Box plots condense this information into

several quantiles (see 5.1.2.2). Errors of a well calibrated forecast model should always be
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scattered around zero. A frequency distribution that has a center shifted from zero indicates

a systematic error (also known as a bias).

For power forecasts one will often see positively skewed error distributions, which are

due to the shape of the power curve which has flat parts below the cut-in wind speed and at

wind speeds that produce the rated power production. The skewed distribution is often the

result of the fact that forecasts close to zero cannot have large negative errors. The inverse

is true for forecasts of near rated power (i.e. large positive errors cannot occur) but forecasts

of rated power are often less frequent than near zero forecasts and hence have less impact on

the error distribution.

5.1.2 Choice of Deterministic Verification methods

When evaluating forecasts one or several evaluation methods or metrics to measure and

compare the forecast performance have to be selected. There is not a single best metric that

can be effectively used for all applications. The definition of "best metric" highly depends on

the user’s intended application and should be based on a quantification of the sensitivity of

a user’s application to forecast error. For example, if a user has to pay a penalty for forecast

errors that are proportional to the squared error, a mean squared error metric is well suited

for evaluation.

However, if the penalty is proportional to the absolute error, a mean absolute error metric

would be a better choice. If the user is interested in predictions of specific events such as

high wind shutdown or large wind ramps, the mean squared or absolute error metrics are not

good choices, because they do not provide any information about the ability of a forecast

to predict these events due to their averaging characteristics. In this case, an event-based

metric should be employed. An example of this type of metric is the critical success index

(CSI), which measures the ratio of correct event forecasts to the total number of forecasted

and observed events.

5.1.2.0.1 “Loss function:” In order to get forecast performance information that is rel-

evant for a user’s application, it is crucial to carefully select the evaluation metrics and

ideally they should be based on the so-called “loss function” for the user’s application. The

“loss function” is also often referred to as a “cost function”, especially when related to costs

that can be associated with specific forecast errors. Conceptually, a well-formulated "loss"

or "cost" function measures the sensitivity of a user’s application to forecast error. If one

forecast is used for different applications with different loss functions, a set of metrics should

be derived. If a single metric is desired, then a composite metric can be constructed by

weighting the individual application-based metrics by the relative importance. More details

on how to develop such loss functions and evaluation matrices can be found in 5.1.4 .
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5.1.2.1 Dichotomous Event Evaluation

One may quantify desirable qualities by considering a range of of dichotomous (yes/no)

events such as high-speed shut-down or ramps. A forecast might imply that "yes, a large

ramp will happen" and trigger the user to take action, but the ability of a forecasting system

to make such predictions is not clear from the average error metrics. Therefore, one should

employ a quantitative verification approach to assess this ability by analyzing the number of

correct positive, false positive, correct negative and false negative predictions of particular

events [14], [1]. Table 5.1 provides an example table to carry out such categorical evaluations.

Table 5.1: Example of a dichotomous evaluation table

Observations

YES NO

YES a b

Fore- correct event forecast false alarm

cast c d

NO surprise events no events

Recommendation for applications with (Extreme) Event Analyses:

Categorical statistics that can be computed from such a yes/no contingency table. The list

below is an except of a comprehensive list of categorical statistics tests published by the Joint

World Weather Research Program (WWRP) and Working Group Numerical Experimentation

on Forecast Verification (WGNE) and provides the most common used metrics and their

characteristics, relevant for forecast applications in the power industry. Details, equations

and more comprehensive explanation on the use of these as well as references can be found

(online) in [1]. It is recommended to apply these categorical statistics in particular for

applications, where standard average metrics do not provide a measure of the true skill of a

forecast to predict a specific event. In wind energy forecasting applications this is in particular

important for extreme event analysis, ramping and high-speed shutdown forecasting etc. In

such applications, it is important to distinguish between quality of a forecast (the degree

of agreement between the forecasted and observed conditions according to some objective

or subjective criteria) and value of a forecast(the degree to which the forecast information

helps a user to achieve an application objective such as improved decision-making). Wilks

[22] and Richardson [21] present concepts for the value versus skill for deterministic and

probabilistic forecast evaluation of that type, respectively.

• Accuracy

Answers the question: Overall, what fraction of the forecasts were correct?

Range: 0 to 1. Perfect score: 1

• Bias score

Answers the question: How did the forecast frequency of "yes" events compare to the
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observed frequency of "yes" events?

Range: 0 to 1. Perfect score: 1

• Probability of detection (POD) Answers the question: What fraction of the observed

"yes" events were correctly forecast?

Range: 0 to 1. Perfect score: 1

• False alarm ratio (FAR)

Answers the question: What fraction of the predicted "yes" events actually did not

occur (i.e., were false alarms)?

Range: 0 to 1. Perfect score: 0

• Probability of false detection (POFD)

Answers the question: What fraction of the observed "no" events were incorrectly

forecast as "yes"?

Range: 0 to 1. Perfect score: 0

• Success ratio

Answers the question: What fraction of the forecast "yes" events were correctly ob-

served?

Range: 0 to 1. Perfect score: 1

• Relative value curve (versus skill) for deterministic forecast

Answers the question: For a cost/loss ratio C/L for taking action based on a forecast,

what is the relative improvement in economic value between climatological and perfect

information? Range: -1 to 1. Perfect score: 1.

5.1.2.2 Analyzing Forecast Error Spread with Box and Wiskers Plots

The box-and-whiskers plot is a visualization tool to analyze forecast performance in terms

of the error spread when comparing forecasts with different attributes such as forecast time

horizons, vendors, methodologies. Figure 5.4 shows the principle of a box and whiskers plot.

This type of charts can be used to illustrate the spread of forecast performance in each hour

of the day-ahead horizon can be visualized. It can also show that some forecasts in some

hours have very low errors compared to the average error in that hour, as well as occasionally

very high errors. In section 5.4.2, a use case for the application of box plots is demonstrated

to verify significance of results.

5.1.2.3 Visualising the error frequency distribution with histograms

Histograms allow one to (1) quantify the frequency of occurrence of errors below or above

a specified level or (2) visualise the forecast error distribution for specified error ranges.

In case (1) the graphical or table presentation can be directly used to derive a metric that

indicates that errors are less than x% of the installed capacity in y% of the time. In this
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Figure 5.1: Principle of a box-and whiskers plot. The plot displays a five-number summary of a set of data,

which is the minimum, first quartile, median, third quartile, and maximum. In a box plot, a box from the first

quartile to the third quartile is drawn to indicate the interquartile range. A vertical line goes through the box at

the median.

way, histograms function as a metric providing the percentage of time that errors are within a

given margin [[4]]. In case (2) the error distribution of a forecast can be derived the graphical

or tabular presentation of the histogram information. This enables an easy identification of

the frequencies of large errors and provides the possibility to analyze and possibly modify

the forecast system to minimize these errors. In summary, histograms visualize two main

attributes:

• Robustness of a forecast

• Large Errors in an error distribution

In Madsen et al. [4] an example can be found for the way histograms help to interpret

statistical results and error distributions. In their example, they directly determined that a 1

hour-ahead prediction contained errors less than 7.5% of the available capacity in 68% of the

time, while a 24 hour-ahead prediction showed errors of that size only in 24% of the time.

For large errors, they determined from the histogram that the same 1 hour-ahead prediction’s

largest errors were 17.5% of available capacity in only 3% of the time.

Recommendation: If the application requires that specified error sizes should occur

less than specified percentages of the time, a histogram analysis should be used to directly

identify, whether or not a forecast’s performance fulfills such criteria.

Figure 5.2 provides two example histograms with typical frequency distribution of errors

for a 2-hour forecast horizon (left) and a day-ahead horizon (right) as described in [4].
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Figure 5.2: Examples of two histograms showing typical frequency distribution of errors for a 2-hour forecast

horizon (left) and a day-ahead horizon (right).

5.1.3 Specific Probabilistic Forecast Verification

As in the case of the verification of deterministic forecasts, it is recommended that multiple

verification scores also be employed for the evaluation of probabilistic forecasts. A well

chosen set of probabilistic forecast evaluation metrics will provide an indication of several

key aspects of the forecast skill and thus provide a more comprehensive representation of

forecast performance than a single metric. It can also assist users and providers in the

determination of which aspects of forecast should be the focus of forecast improvement

efforts.

An evaluation of probabilistic forecasts should ideally three components:

1. a metric that measures overall quality (discrimination and calibration together), such

as the Brier Score (BS) or Ranked Probability Score (RPS)

2. a metric that measures discrimination alone such as the ROC

3. a metric or chart that provides an indication of the reliability (calibration) such as the

ranked histogram. reliability diagram or CAL component of the Brier Score.

This combination of metrics will provide a broad perspective on forecast performance

and also can assist in the identification of forecast performance issues. For example, when

discrimination is good but calibration (biases) issues are degrading the overall quality, a

reliability diagram can reveal the nature of the calibration problems. Details about how to

compute or construct each of these metrics and diagrams can be found in section 4.2

5.1.4 Establishing a Cost Function or Evaluation Matrix

Due to the complexity of the task and the fact that the objectives of forecast users are not the

same, the following section is an introduction to the concept of a evaluation framework in

which structured procedures for the evaluation and verification of forecasts are established.

The structure may be shortened and adapted depending on the size of the forecasting system

and the importance in the overall business processes.
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Best practice in this context is to following a procedure, where the evaluation/verification

reflects the importance of a forecasts in it’s role of the business processes and provides

incentives for the forecast service provider to generate forecasts that fit the outlined (and

verified) purpose.

As a minimum requirement when establishing such an evaluation framework the following

set of procedures should be considered:

1. Definition of the forecast framework

It is important to exactly define the forecast application, the key time frames and a

ranking of relative importance.

2. Base performance evaluation on a clearly defined set of forecasts

The base performance should contain "typical error" metrics in order to monitor an

overall performance level.

• time frame: minimum 3 months, ideally 1 year

• "typical error" metrics: nMAE, nRMSE, BIAS

3. Quality assessment of the evaluation sample data

The detection of missing or erroneous data and a clear strategy how to deal with such

missing data needs to be made at the outset of any evaluation period to ensure that

verification and forecasting is fair and transparent.

4. Specific Performance evaluation on a set of error metrics

• Visual Inspection

• Use of more specific metrics:

(a) deterministic: SDE, SDBIAS, StDev, VAR, CORR

(b) probabilistic: Brier Score, ROC curve, Probability Interval Forecast Evalu-

ation (4.2)

• Use of histogram or boxplot for evaluation of outliers

• Use of contingency tables for specific event analysis

• Use of improvement scores relative to a relevant reference forecast for compar-

isons

•

Note, details on the framework and evaluation metrics can be found in [4] and [6], specific

metrics and explanation of metrics can be found in [2], [16] for deterministic forecasts

inclusive solar forecasting and for probabilistic forecast metrics in [3]. Significant tests can

be found e.g. in [17].
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Figure 5.3: Example of an evaluation matrix that verifies forecasts against 6 test metrics and displays the scores

for a holistic overview of the forecast performance.

5.1.4.1 Evaluation Matrix

Establishing an evaluation matrix is complex, but can be straight forward if the principles of

forecast uncertainty and choice of appropriate metrics are incorporated into the evaluation

strategy.

Best practice for the establishment is to go through the various steps outlined in section

5.1.4 to choose the components for the evaluation framework. The core concept is to use this

framework to define a formal structure and then add multiplication factors to weight each of

the selected individual metrics according to their relative importance.

The matrix can be setup in a spreadsheet environment with macros or within a database

environment, where all data is available and metrics may even be directly computed though

the database software. The key point of the matrix is that the forecast performance results

can be collected, multiplied with an “importance factor”, normalised and transferred into the

summary table to visualize the scores. For example the scores can be visualized with a bar

chart that indicates the performance in a scale from e.g. 0 to 1 or 0 to 100 as shown in 5.3.

Such a evaluation matrix provides important information in a comprehensive way and

can be applied for comparisons as well as for the analysis of the potential for forecast

improvement.
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5.2 Operational Forecast Value Maximization

Key Points

• Once operational forecasts have been established it is important to monitor the

quality of generation facility data supplied to the forecast system(s) and used

for forecast evaluation; often attention to this diminishes after a benchmark is

completed

• Ongoing deep analysis of forecast performance and effective provider user

communication is critical for maintaining and refining forecast performance

• Focus should be on maximizing forecast value for the application and not

on maximizing performance of standard metrics; this may include identifying

or refining the cost function for a users application and/or working with the

provider to optimize forecasts for the application(s)

• A plan should be developed to motivate and reward providers to continually

refine forecast methods and adapt new approaches from the latest research; this

may include financial incentive schemes

Operational forecasts should be evaluated in the context of their end-use. Different use

cases will have different cost functions, some of which may be complex or impossible to

define. Organizations evaluate operational forecasts for a variety of reasons and on a wide

range of scales, from individual wind farms to entire fleets, and from short lead times to

horizons spanning several days.

Simple evaluation metrics such as MAE or RMSE can be used to get an overview

of general forecast performance and to provide an indication of forecast performance for

decisions with (symmetric) linear or quadratic loss functions, respectively. However, in

most cases the true cost of wind power forecast errors will be more complex and depend on

externalities.

Systematic evaluation of operational forecasts is however an important business function

for forecast users. Whether this is monitoring the quality of the forecasts produced in-house

or procured from vendors, regular evaluation supports continuous improvement in forecast

performance and end-use. This section provides a guide to the best practices in evaluation

of operational forecasts. It begins by reviewing common motivations for continuous and

periodic evaluation of operational forecasts, and then discusses different evaluation paradigms

for specific use-cases.
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5.2.1 Performance Monitoring

Continuous monitoring of forecast performance is best practice in order to develop an under-

standing of forecast capability and to identify and respond to issues with raw forecast data

or its processing. While failure of forecasting systems is extremely rare, weather models, IT

systems, and the forecast target (e.g. individual wind farm, portfolio of wind farms, national

wind output) are constantly evolving. This has the potential to introduce new and unforeseen

sources of error.

5.2.1.1 Importance of Performance Monitoring for Different Time Periods

Short Periods (monthly): While error metrics or contingency tables calculated over short

periods do not provide reliable measures of overall performance they can provide an indication

of problems with a forecasting system and large errors should be logged and investigated.

Abrupt changes in forecast performance can result from errors in data processing, such as

incorrect availability information during maintenance.

Long Periods (> 6 months): Changes in performance over longer time scales may be a

result of changes to a supplier’s numerical weather model(s) or changes in the behaviour of

wind power plant as they age. Slow changes may be more difficult to detect, but over time

can accumulate significant biases which should also be investigated.

For both cases, it is necessary to dis-aggregate forecast metrics to identify some sources

of error. Important factors to consider when dis-aggregating errors are to include lead-time,

time of day, power level and weather type.

Regular reporting and tracking of forecast performance over relevant periods can help

foster understanding of forecast capability across business functions and support staff and

process development.

Recommendation:

• Forecasts performance should be monitored continuously to quickly identify technical

problems

• Large errors should be investigated and recorded for future analysis

• Error metrics should be dis-aggregated by appropriate factors, e.g. lead-time, power

level

• Regular reporting for error metrics supports forecast users’ interpretation of forecast

information

5.2.2 Continuous improvement

Forecast evaluation is the first stage in identifying areas for potential improvement in fore-

casting systems. Periodically evaluating operational forecast performance and its impact
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on wider business functions can be a valuable exercise. For example, changes in the way

forecasts are used, or the importance of different lead-times or variables may be a cause to

change the way forecasts are produced or communicated internally.

In situations where multiple operational forecasts are produced or supplied, regular

benchmarking can add value as different services are upgraded over time or exhibit different

performance characteristics.

Recommendation:

• Evaluation underpins forecast improvement and insights should be shared with both

forecasters and end-users

• Evaluation and improvement should be driven by end-use and business value

..

5.2.3 Maximization of Forecast Value

Forecast value can be maximized by continuously monitoring and evaluating operational pro-

cesses of both forecasts and measurement quality. Additionally, the use of forecasts and the

interaction with other business processes need to be taken into consideration as well, if they

can impact the quality of the forecasts or the correctness and trustworthiness of the evaluation.

The use of a single metric such as a mean absolute or root mean squared error for forecast

evaluation may be a way to start a process and can be helpful in identifying errors in the

system that can cause unwanted costs. This is a valid and useful approach. It is however

recommended to use such simplified methods only for monitoring purposes and not as the

primary verification tool (see also chapter 2, especially sections 2.2, 2.3 and 5.1).

Recommendation: The following aspects should be taken into consideration when iden-

tifying a “loss function” or “cost function” in the selection process of performance metrics

for operational forecasts. Details on some metrics can be found in the Appendix A, a com-

prehensive database for metrics can be accessed online [1] together with the concepts of the

metrics and valuable combinations of metrics, which have also been described in more detail

in section 5.1.

• Evaluation should contain a selection of metrics:

– One metric alone is not indicative of overall forecast performance

– Use de-compositions of errors to identify the origin of errors. e.g. look at bias

and variance alongside MAPE or RMSE.
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– Selected metrics should reflect the costs of errors or security constraints to

the greatest extent possible based on the user’s knowledge of the application’s

characteristics

– Box plots, histograms and scatter plots reveal additional important information

compared to a "typical error" metric

• Evaluation metric combinations can provide a representative approximation of a “cost

function”:

1. subjective evaluation through visual inspection

2. quantitative, dichotomous (yes/no) verification of critical events such as high-

speed shut-down or ramps with e.g. contingency tables

3. error ranges per important forecast horizon

4. error ranges per hour of day or forecast hour

5. error frequency distributions in ranges that have different costs levels

6. separation of phase errors and amplitude errors according to their impact

7. parametric tests, bootstrapping can be used to look on individual error measures

before averaging

5.2.4 Maintaining State-of-the-Art Performance

If expensive long-term solutions have been established it can be challenging for an end-user

to ensure that state-of-the-art performance is maintained. This can be due to the stiffness of

the established IT solution (see also Part 1 of this recommended practice), but also due to

the fact that there is no monitoring of the performance.

Recommendation: It is recommended that a performance monitoring takes place, where

those forecasts that are relevant for the business processes are compared against a suitable and

objective measure. The most common measures are climatology values, persistence values

or comparison to previous periods, such as the previous calendar year. Such techniques

can provide motivation and can be set up with a reward scheme for the forecast provider to

improve forecasts with time and improved knowledge of the specific challenges and needs of

the end-user’s forecast problem. (see Table 5.2)

5.2.5 Incentivization

Operational forecasts may be tied to an incentive scheme by which monies are exchanged

based on forecast performance. Examples of such arrangements exist in both commercial

forecast services and regulation of monopoly businesses. As the terms of the incentive

scheme typically include details of how forecasts are evaluated, performing this evaluation

poses few risks. However, the evaluation methodology should be carefully considered when
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Table 5.2: List of possible performance monitoring types useful for evaluation of operational forecasts, incentive

scheme benchmarks, tests and trials. The types are not meant to be stand-alone and may also be combined.

Performance Mea-

sure
Comment/Recommendation

Improvement over

persistence

comparison against persistence is the same as comparing not hav-

ing a forecast to having one. Useful measure for short-term fore-

casts as a mean of evaluating the improvement of applying forecast

information to measurements. Note: be aware of data quality is-

sues when evaluating, especially in the case of constant values that

benefit persistence, while the forecast provides a realistic view.

Improvement over

past evaluation pe-

riod / forecast

If improvement is important, the comparison to a past evaluation

can be useful, especially in long-term contracts. In this way, the

forecaster is forced to continue to improve and the target is moved

with the improvements. The payment structure however needs to

incorporate the fact that improvements reduce over time and have

an upper limit.

Comparison against

set targets

If the required performance of a forecasting system can be defined,

clear targets should be set and the payment directed according to

a percentage from 0-100% of the achieved target.

Categorised error

evaluation

An effective evaluation format is to not set one error target, but

categorise errors instead e.g. large, medium and small errors. If

large errors pose a critical issue, then improvement on these may

be incentivized higher and vice versa. The end-user can in that

way steer the development and focus of improvements.

negotiating or subscribing to such incentive schemes.

Incentives may take the form of a linear relationship between reward/penalty and a forecast

metric such as Mean Absolute Error, which may be normalized to installed capacity, and

capped at some minimum/maximum reward/penalty. Similarly, incentives may be based on

an event-based metric, accuracy or hit-rate for example, for specific events such as ramps or

within-day minimum/maximum generation. The time period over which such an incentive is

calculated and settled will have a large impact on it’s volatility as evaluation metrics may vary

greatly on short time scales. Longer timescales are conducive to a stable incentive reflective

of actual forecast performance rather than variations in weather conditions. The basic

evaluation rules developed in section 2 and 4 are equalyy valid here and are recommended

to be applied.

In summary, the recommendation is that the formulation of an incentive schemes should
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consider four factors:

1. selection of relevant target parameters (see section 2.3)

2. selection of relevant metrics (see sections 5.2,5.1, 5.1.4, 5.4.1)

3. selection of relevant verification horizons (see section 2.2)

4. exclusion principles (see chapter 3 and section 3.2 and 3.5)

The selection process of relevant target parameters is highly dependent on the forecasting

solution. The objective and proper setup of verification as well as evaluation metrics and

frameworks can be found in 2, 4 and sections 5.1, 5.1.1, 5.3.1.

Recommendation: A set of relevant target parameters needs to be defined to provide a

focus area for the forecaster. Comparison to a previous period, to a persistence forecast or a

set target that is realistic can circumvent a number of constraints that are difficult to exclude

in an evaluation. The most important consideration for any performance incentive scheme

is that the scheme should put emphasis on the development and advancement of forecast

methods for exactly those targets that are important for the end-user’s applications.

Table 5.2 provides a list of possible benchmark types for an incentive scheme.

5.3 Evaluation of Benchmarks and Trials

Key Points

In order to maximize the probability of selecting an optimal forecast solution for an

application the performance evaluation uncertainty process should be minimized and

non-performance attributes of a forecast solution should be effectively considered.

Evaluation uncertainty can be minimized by a well-designed and implemented per-

formance benchmark or trial protocol. A benchmark should have three well designed

phases: (1) preparation, (2) execution and (3) performance analysis that each address

the key issues associated of three primary attributes of an evaluation process.

As a general guideline, the evaluation needs to follow the three principles of being:

1. representative

2. significant and repeatable

3. relevant, fair and transparent

The principles have been explained in detail in Chapter 2. In this section specific

considerations and the application of these principles in benchmarks and trials are provided.
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5.3.1 Applying the 3 principles: representative, significant, relevant

The three key attributes of a forecast solution evaluation associated with a trial or benchmark

(T/B) are (1) representativeness (2) significance and (3) relevance. If any one of these are

not satisfactorily achieved the evaluation will not provide meaningful information to the

forecast solution decision process and the resources employed in the trial or benchmark will

effectively have been wasted. Unfortunately, it many not be obvious to the conductor of a

T/B or the user of the information produced by the T/B whether or not these three attributes

have not been achieved in the evaluation. This section will present the issues associated with

each attribute and provide guidance on how to maximize the likelihood that each will be

achieved.

The conductors of a T/B should consider all of the factors noted in the three key areas

for a T/B. Part of these are described in detail in section 2 in sections 2.1, 2.2 and 2.3. The

following is a reminder with specifics for the T/B case:

1. Representativeness

Representativeness in this context refers to the relationship between the results of a

trial or benchmark evaluation and the performance that is ultimately obtained in the

operational use of a forecast solution. It essentially addresses the question of whether or

not the results of the evaluation are likely to be a good predictor of the actual forecast

performance that will be achieved for an operational application. There are many

factors that influence the ability of the T/B evaluation results to be a good predictor of

future operational performance. Four of the most crucial factors here are:

(a) size and composition of the evaluation sample,

(b) quality of the data from the forecast target sites,

(c) the formulation and enforcement of rules governing the submission of T/B fore-

casts (sometimes referred to as fairness),

(d) availability of a complete and consistent set of T/B information to all T/B partic-

ipants (sometimes referred to as transparency)

2. Significance (see section 2.2) For benchmarks and trials it is specifically important

that a result obtained now, should also be obtainable when doing a second test. Or, if

a test runs over 1 month, the same result should be obtainable over another randomly

selected month.

Often, especially in short intervals, this is not possible due to the different climatic and

specific weather conditions that characterize specific periods of a year. In this case, it

is necessary to establish mitigating measures in order to generate results that provide

a correct basis for the respective decision making.
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Such a mitigating measure could be to consume potentially new forecasts in real-time

and

(a) compare or blend them with a running system in order to test the value of such a

new forecast

(b) evaluate the error structure of a potential new forecast to the error structure of

your running system

The both tests can be relatively easy incorporated and tested against the main forecast

product, such as a day-ahead total portfolio forecast. It will not reflect the potential or

performance and quality of a new forecast in its entirety, but comparing error structures

in form of for example error frequency distributions, ensures that a bias due to a lack

of training or knowledge about operational specifics does not provide a misleading

impression on quality. Chapter 4 details principles and section 5.1 provides details on

suitable metrics.

3. Relevance (see section 2.3) Results obtained must reflect relevance in respect to the

associated operational task and forecasts for energy applications should follow physical

principles and be evaluated accordingly. That means in fact that the b/t task must in

some way reflect the future function of the forecasts. If this is not so, the results from a

b/t should not be used to select a solution of vendor. Instead it may be used to evaluate

other performance measures, such as service, support, delivery etc. Fairness in the

evaluation, specific for benchmarks and trials then means that the forecast providers

are informed about this different objective. Forecasts also need to be evaluated on

the same input and output. If assumptions are made, these assumptions must also be

provided in a transparent way to alll participants.

A useful approach is to create a evaluation plan matrix that lists all of the factors noted

in the discussion in this section and how the users evaluation plan addresses them.

5.3.2 Evaluation Preparation in the Execution Phase

The evaluation of a T/B should start in the execution phase in order to prevent errors along

the way from making results unusable. Since there is usually a time constraint associated

with T/B’s there are a number of aspects that should be considered to ensure meaningful

results.

Recommendations for the the execution phase:

Data monitoring:

Measurement data and forecast delivery should be monitored and logged in order to pre-

vent data losses and to ensure that all relevant data is available for the evaluation. It is

recommended that the data monitoring should contain the following tasks:

• test accuracy and delivery performance for fairness and transparency
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• monitor forecast receipt to test reliability

• exclude times, where forecasts are missing to prevent manipulation on performance

Consistent Information

The fourth key factor is the availability of a complete and consistent set of T/B information to

all participants in the T/B. Incomplete or inconsistent information distribution can occur in

many ways. For example, one participant may ask a question and the reply is only provided

to the participant who submitted the inquiry.

Develop and refine your own evaluation scripts:

Independent whether is is a first time b/t or a repeated exercise, the execution phase is the

time, where the following evaluation has to be planned and prepared. It is recommended

to verify metrics scripts or software tool and input/output structures as well as exclusion

principles.

5.3.3 Performance Analysis in the Evaluation Phase

The performance analysis has a number of key points that need consideration. These are:

1. Application-relevant accuracy measures of the forecasts

The key point here is that the metrics that are used in the verification must have

relevance for the application. For example, if a ramp forecast is tested, a mean average

error only provides a overall performance measure, but is not relevant for the target

application. If a vendor knows that performance is measured with an average, the

incentive would be to dampen forecasts to reduce the overall average error, which is

the opposite of what is required for the application to work. Such an application would

have to use a scoring system for hits, misses and false alarms of pre-defined ramping

events.

2. Performance in the timely delivery of forecasts

The key pitfalls in an T/B are often associated with the failure to closely monitor the

following aspects:

(a) Lack of check or enforcement of forecast delivery time

If forecast delivery is not logged or checked, it is possible for a forecast provider to

deliver forecasts at a later time (perhaps overwriting a forecast that was delivered

at the required time) and use fresher information to add skill to their forecast or

even wait until the outcome for the forecast period is known. Although one might

think that such explicit cheating is not likely to occur in this type of technical

evaluation, experience has indicated that it is not that uncommon if the situation

enables its occurrence.
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(b) Selective delivery of forecasts

This example illustrates how the results might be manipulated with explicit

cheating by taking advantage of loopholes in the rules. In this example the

issue is that the B/T protocol does specify any penalty for missing a forecast

delivery and the evaluation metrics are simply computed on whatever forecasts

are submitted by each provider. As a forecast provider it is easy to estimate the

difficulty of each forecast period and to simply not deliver any forecasts during

periods that are likely to be difficult and therefore prone to large errors.

This is an excellent way to improve forecast performance scores. Of course, it

makes the results unrepresentative of what is actually needed by the user. Often

it is good performance during the difficult forecast periods that are most valuable

to a user.

3. Ease of working with the forecast provider

In a T/B support in understanding forecast results and error structures may be a good

time to test and evaluate for the future. It should however be considered to communicate

to the vendors, if it is a decision criteria, especially in non-refunded situations, where

resources are used differently than in contractual relationships.

5.3.4 Evaluation examples from a benchmark

Figure 5.4 shows an example of a forecast evaluation using a box-and-whiskers-plot to

visualize the spread in MAPE (mean absolute error as percentage of nominal power) of

5 forecasts of different day-ahead time periods (each column) at two different sites. The

distribution within each time period is shown for the 5 forecasts errors. In that way, the

spread of forecast performance in each hour of the day-ahead horizon can be visualized. It

also shows how some forecasts in some hours show very low errors compared to the average

error in that hour, as well as occasionally very high errors.

Figure 5.5 shows an example of an evaluation of errors by time of day for a fixed lead

time of 3 hours. It illustrates a very large spread in errors during certain times of the day, as

would be expected.

Nevertheless, if such evaluations are compared between different forecast providers an eval-

uation of the “most costly errors” may reveal a very different result than, if only an average

metric per forecaster would be used.
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Figure 5.4: Example of a box-and-whisker-plot verification at two different sites (left and right panel) for

different look ahead times (x-axis; DAx is 𝑥𝑡 ℎ hour of day-ahead forecast) and mean absolute percentage error

(MAPE; y-axis).

Figure 5.5: Example of a forecast error scatter plot by time of the day (top x-axis) for 3-hours lead times and

forecast error (y-axis)

5.4 Evaluation of Development Techniques

Key Points

Keeping State of the Art in forecasting is an important aspect for any end-user, but

especially for those with complex IT infrastructure systems or multiple suppliers of

forecasts that are bound to statistically consistent forecasts over a period of time for

highest performance.

This Section outlines how analysis, diagnostics and evaluation of improvements need

to be structured in order to ensure sustained improvement over time without radi-

cal changes in existing infrastructures and the typical pitfalls associated with such

evaluations.
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5.4.1 Forecast Diagnostics and Improvement

The improvement of a forecast over time is especially important in an operational envi-

ronment, where the IT infrastructure is complex and the amount of resources required to

exchange a forecast service provider is in no relation to the gain in forecast performance.

Other cases of this type may be a statistical dependence of a or multiple forecasts going into

a tool for further processing. The following recommendations may therefore be applied for

any of such cases, where an end-user is bound to a forecast solution.

Improvements over time and the importance of a forecast solution being able to develop

over time in a real-time environment is difficult to measure. Also, the improvement of

forecasts may have a steep curve in the first years, or when constant changes in the system

become less frequent.

However, over time any forecast has a limit and the rate of improvement reduces. This needs

to be taken into account equally much as the ability of a forecast solution for develop over

time to keep a state of the art character.

Table 5.2 is a guideline for the evaluation of forecasts and diagnostics for such improve-

ment monitoring (see also 5.2.5).

5.4.2 Significance Test for new developments

Forecast vendors and researchers are always seeking for improvements and new developments,

testing and investigating new technology or techniques to add value to specific tasks in the

forecasting arenas. Whenever a new development is ready for testing, the researchers or

technical staff are confronted with the question, whether the new technique outperforms the

older or current state of the art. Due to time constraints, data limitations or lack of historical

available forecasts or measurements, this is often a difficult question to answer.

The following example demonstrates such a typical situation and presents and outlines

the overall considerations that need to be taken, followed by the choice of metrics and test on

significance on the results.

Initial Considerations

A forecasting model that can take various inputs, such as online measurements in an auto-

regressive manner, weather forecasts or other predictive features, generates power forecasts,

which estimate the future electricity production. In order to decide which model is most

suitable, it is necessary to evaluate its quality by comparing the forecast against power

measurements. Typically, the errors of a separate test data are compared against each other

in order to then decide in favor of one of the models. Which error measure is chosen should

be individually adjusted to the corresponding application.

The evaluation should be performed strictly on test data that were not used to calibrate

the respective model. Otherwise it can easily happen that models are favored, which have

adapted too much to the training data without being able to generalize for future unknown

situations. If several models are compared, they should also have been jointly trained on data
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that does not originate from the test set.

In the case of wind power forecasts, it is furthermore essential to select the test data from

a continuous period. The data cannot be considered temporally independent. If one were to

randomly assign individual samples to a training and a test set, one would assign both sets

to random samples that share a large part of the information. As a result, preference would

also be given to models that are over-adapted to the training data.

In addition to the error measure, other aspects can also play a role. For example, one

is faced with the question of whether an established model should be replaced. For several

reasons it may seem attractive not to replace it even though another one shows a smaller error.

For instance, because confidence in the model functionality has been built up, or because a

change in the model requires additional effort. Such or similar cases make it necessary to

examine the significance of the estimated error values. The critical question behind this is

whether the extent of the test data considered is sufficient to form the basis for a decision.

Evaluation of Significance

One way to evaluate the significance of the error values is to evaluate the distribution of

the error measures of a model across different locations. In the following, the relevant

aspects of the results of the study in [17] are summarized. It compared different machine

learning models for weather forecasting and real-time measurement based forecasting. The

box plot shown in Figure 5.6 shows the distribution of the error measures of 29 wind farms in

northern Germany. The error measure used here is the root mean square error (RMSE) which

is applied to nominal power normalized time series. The individual boxes represent the error

distribution of one of the six models used. The triangular markers indicate the confidence

range of the median. If these ranges do not overlap for two models, the medians are different

under normal distribution assumption to a 5% significance level. This corresponds to a visual

representation of a t-test.

Figure 5.6: RMSE distribution for six different forecasting models forecasting for 29 wind farms in the North of

Germany (left figure). Pairwise differences RMSE for each single model in comparison to the wind farm RMSE

of the reference model ELM (CV-Ensemble) [17] (right figure).

Figure 5.6 (left) shows, that only the power curve model has a significantly higher RMSE.
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All others cannot be clearly distinguished. The reason for this can be found in the broad

distribution. This can be explained to a greater extent by the different local properties, such

as the number of turbines per wind farm or the local orography. When considering the paired

differences, local influences can be partially eliminated.

Figure 5.6 (right) shows the distribution of the difference between a model and a reference

model (ELM (CV-Ensemble)) across all 29 wind farms. If the distribution of a model is

significantly in the positive range, it can be assumed that the reference model is significantly

better. Thanks to these pairwise differences, it can now be established that two other models

have a significantly worse result.

5.5 Use cases

Key Points

The section presents a number of use cases that illustrate how an evaluation in a spe-

cific part of the power and energy sector should ideally be carried out. In the Energy

Trading and Balancing, ramping forecast in general and for reserve allocation,

forecasts are today a crucial part of the processes at balance responsible parties,

but also system operators. And yet, many mistakes are made in the evaluation and

incentivization of forecasts that effectively often lead to results that are unsatisfactory

and create mistrust in the ability of forecast service providers to have skills to provide

useful forecasts.

5.5.1 Energy Trading and Balancing

In energy trading forecasts of multiple variables are used in order to provide situational

awareness and support quantitative decision making. Costs accrue on the basis of forecasts

and energy prices at multiple look-ahead times. An example is forecasts used at the day-ahead

stage and then again at an intra-day look-ahead time frame for the same trading period, and

the relative price of buying and selling energy at different times.

Furthermore, prices, particularly imbalance prices, may be influenced by the cumulative

forecasts and forecast errors of all market participants creating dependency between wind

power forecast errors and the price at which resulting imbalances are settled. Similarly,

unrelated events may cause large price movements that result in an otherwise unremarkable

forecast error having a large financial impact. Therefore, care must be taken when designing

an evaluation scheme that it is reflective of forecast performance and not externalities.
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5.5.1.1 Forecast error cost functions

If trading decisions are based on a deterministic power production forecast, it is tempting to

try and evaluate the ‘cost’ of forecast errors based on energy prices.

For example by taking the cost of under forecasting to be equal to the difference between the

day-ahead price and the system sell price (the opportunity cost of having to sell at the system

sell price rather than day-ahead price), and taking the cost of under forecasting to be equal

to the difference between the system buy price and the day-ahead price (the cost of having to

buy back the energy not produced at a higher price than it was sold for).

This approach has several problems:

1. price asymmetry:

Traders are aware of the asymmetry in imbalance prices and have a view of whether

the market is likely to be long or short, as such they do not naively trade the forecast

production and will hedge against penalizing prices. It is therefore not representative

to assume the day-ahead forecast is contracted.

2. adjustment opportunities:

The intra-day market and flexibility within the traders portfolio provide opportunities

for adjustment between the day-ahead market and imbalance settlement which may

influence both the value and volume of traded energy, and potentially the imbalance

price.

3. Forecast error correlation:

Wind power forecast errors are highly correlated across the entire market and therefore

to the market length and total imbalance. As a result, evaluating forecast errors based

on imbalance cost will not discriminate between forecast performance and correlation

with imbalance prices and one may incorrectly interpret reduced ‘cost’ as improved

forecast skill.

For these reasons it is recommended that (normalized) mean absolute error be used as

part of an evaluation matrix of other relevant metrics when evaluating deterministic wind

power forecast performance for trading applications (see 4, 5.1). Additionally, a real-example

of a market analysis and evaluation of how different trading strategies influence tne costs in

comparison to the revenue can be studied at [? ], and [? ].

If trading decisions are based on probabilistic power production forecasts those forecasts

should be evaluated as described in section 4.1.5. If probabilistic forecasts of both power

production and prices are used it is important that the dependency structure between power

and price forecast errors is correct. Various metrics exists to measure this, such as the

multivariate energy score [? ] and 𝑝-variogram score [? ]. Details are beyond the scope of

this document.
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5.5.2 General Ramping Forecasts

Power ramps can have significant impact on power system and electricity market operation

and are of interest to decision-makers in both domains. However, as ramps comprise a

sequence of two or more forecasts, metrics that only compare predictions and observations at

single time points are not suitable for evaluating ramp forecasts. Event-based evaluation in

the form of contingency tables and associated metrics provide a tool-set for evaluating these

forecasts.

Once an event is defined, such as ramp defined as a particular change in wind energy

production over a particular time period, occurrences in forecasts and observations can be

labeled and a table of true-positive, false-positive, true-negative and false-negative forecasts

can be produced. From this, the skill of the forecast at predicting such events can be evaluated.

The definition of a ramp will influence the forecast tuning and evaluation results. It is

recommended that the definition reflects the decision(s) being influenced by the forecast. For

example, this could be related to a commercial ramp product definition, or the ramp rates of

thermal power plant used in balancing. Furthermore, if an economic cost can be assigned to

each outcome, then the forecasting system can be tuned to minimize costs, and the relative

value of different forecasting systems can be compared.

In general terms, the following methods and metrics are recommended as basis for the

evaluation of ramp forecasts:

• Contingency tables and statistics derived from the tables provide an evaluation frame-

work

• Ramp definitions should reflect operational decision-making

• The cost implications of different types of errors should be considered when comparing

different forecasting systems

In the next sections, a number of examples are described to demonstrate how evaluation

should be planned and that illustrates the pitfalls in the metric selection process.

5.5.2.1 Amplitude versus Phase

Ramping events cause shortage or overproduction and risk for congestion in the power system

for relatively short time frames. For this reason, many system operators have different levels

of reserve time frames and also forecasting time frames that provide the possibility to allocate

different types of reserve to counteract ramps that have been forecasted insufficiently strong

(amplitude) and/or are wrong in phase. On system operator level it is often described that

the amplitude is more important than the exact timing (phase).

In this case, it is necessary that the evaluation method does not punish the forecaster

stronger for a phase error than an amplitude error. This means for example that using a

root mean square error to evaluate ramps is incentivizing a forecaster to dampen amplitudes
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and optimize on phase. Sometimes it is referred to the “forecaster’s dilemma” when the

end-user defines a metric for evaluation such that the target is opposite of what the end-user

asks for and needs. The forecast provider then either tunes forecasts to the metric or to what

the end-user likes to see and risks to be punished (e.g. loose a contract), when evaluated.

See also [? ].

Recommendation: When a forecaster should be incentivized for amplitude in a ramp

forecast, the evaluation metric cannot be an average error measure such as mean absolute

error or root mean square error. If these average error metrics are used, the data to be

evaluated has to be prepared to:

• reflect only cases that contain ramps of a certain strength

• widen ramp events with a forward/backward window of 1−2 hours to allow for phase

errors

Additionally, either a contingency test with hit rate, misses and false alarms have to be used

in the evaluation of the forecasts to reflect the focus on amplitude.

5.5.2.2 Costs of false alarms

Ramps can have different costs in a power system. In some systems, too fast up-ramping

causes congestion or in some way over-production that needs to be dealt with (case 1). The

opposite case, the down-ramping can cause that there is power missing on the grid that is

not available and the fast primary reserve causes high costs (case 2). In case 1, the system

operator has to be able to reduce ramping capacity of the wind farms or have other highly

flexible resources on the grid to level out the overproduction. In case 2, lacking energy can

cause high costs for fast ramping resources on primary reserve level or outages, which are

unwanted.

The consequence is that the cost profile for up-ramping and down-ramping is usually

different. Also, the cost of not forecasting a ramp that occurs (false-negative) can be

significantly higher than the cost of preparing for a ramp, which does not occur (false-

positive). The only way to verify, whether a forecast is sufficiently good in predicting a

specific type of ramping event is to use contingency tables, where the forecast skill can be

computed and visualised.

5.5.3 Evaluation of probabilistic Ramp forecasts for Reserve Allocation

The primary scope of reserve predictions is to reduce balancing costs via dynamic allocation

of reserve and if possible with the help of non-fossil fuel capacity.

If a system operator (SO) or balance responsible party (BRP) can schedule reserve more

dynamic, the costs for imbalances become lower and the energy system more efficient.

This was the scope of a study that will be presented as an example of the evaluation of a

real-time environment application that needed a practical solutions in order to reduce costs
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for reserve allocation for the end-user [23]. The evaluation strategy and results of the study

can be considered a kind of guideline on how to best manage renewable energy imbalances

in a market system.

In this sample control area there are approximately 40 wind farms. The permanent

allocation of reserves for the control area amounted at the outset to +/-10% and up to +/- 30%

of installed capacity of wind, dependent on the time of the year, i.e. there are large seasonal

reserve allocation differences. In our example area the wind generation is correlated and

strong ramps occur. However, it is seldom to observe that the wind generation ramps down

in a dramatic speed. Ramp-ups are faster than down-ramps and it is very unlikely that an

instant total wind ramp down to zero can occur in the control area.

5.5.3.1 Definition of Error Conditions for the Forecast

Fundamental for forecasting is that a criteria for success and error can be defined. Given the

fact that certain swings in the data are unrealistic or possibly so extreme that the operational

cost of self-balancing would be too high, there was need to work with probabilities. One way

of doing this is to define that, if a forecast value lies within a band, the result is a success and

if it lies outside the band, it is a false alarm. A constant very wide reserve band would imply

100% success, but would not be affordable.

The gain lies in finding a balanced criteria considering the following questions:

• How many failures can be tolerated ?

• What is the allowed maximum error ?

• Which frequency of reserve under-prediction is allowed ?

• What is the cost of spilled reserve ?

These questions are related or determined by the SO’s operational experience and stan-

dards to which the SO must be conform. Figure 5.7 illustrates the challenges of deciding how

many outliers can be accepted to reduce costly spill, a dilemma every balance responsible

party has to deal with. The static allocation of reserves is very expensive, especially if all

extremes should be covered. Even, if extremes are not covered always, there is a lot of spill

(black areas in Figure 5.7) in comparison to a dynamic allocation of reserves.

The difficulty for such a situation is to find objective criteria suitable for evaluation of a

model result, which relates to operation and presents incentives for the forecaster to reduce

the spill by maximizing coverage of extremes. Standard statistical metrics do not provide

answers to this optimization task, because (1) it is not the error of 1 forecast any more and (2)

the target is whether the allocation was sufficient and cheaper than allocating with a constant

“security band”.

With contingency statistics it is possible to ask the right questions:
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Figure 5.7: Illustration of the “reserve allocation dilemma” of costly spill versus covering all possible ramping

events. Here, 𝑅𝑝𝑜𝑠 is the dynamic positive reserve, 𝑅𝑛𝑒𝑔 is the dynamic negative Reserve, the upper linear

borders 𝑅𝑝𝑜𝑠 and 𝑅𝑛𝑒𝑔 are the static reserve allocation, the black area and the outer light gray areas are the spill

for the dynamic and static allocation of reserves, respectively.

Hits and Misses Analysis show the percentage of time the band was too small

Positive and negative reserve allocation can be split up to reflect use of tertiary reserve

allocation (cheaper) instead of primary reserve (high expenses)

Table 5.3: Applied metrics in the evaluation matrix for the reserve allocation example in [23]. The input forecasts

are split up in 9 percentile bands from P10..P90 and a minimum and maximum.

Metrics Purpose Input forecasts

BIAS average to gain overview MIN

MAE average to gain overview P10

RMSE average to gain overview P20

Inside Band consistency forecast-deployment P30

𝑅𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 forecasted reserve deployment P40

Hit rate Total achievable percent of activated reserve P50

𝑅𝑝𝑜𝑠 as above for pos reserve P60

𝑅𝑛𝑒𝑔 as above for neg. reserve P70

Misses Total avg under-predicted reserve P80

𝑅𝑝𝑜𝑠 as above for pos reserve P90

𝑅𝑛𝑒𝑔 as above for neg. reserve MAX

Spill Total avg over-predicted reserve

𝑅𝑝𝑜𝑠 as above for pos reserve

𝑅𝑛𝑒𝑔 as above for neg reserve

The following analysis was carried out to reflect these objectives:
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1. A BIAS, MAE and RMSE provide an overview of the plain statistical capabilities of

the various forecasts

2. Contingency tables for hit rate, misses, spill and reserve coverage have been computed

to provide metrics for further optimization of the task

Table 5.3 shows the evaluation matrix of metrics and their purpose in the verification

and further optimisation. The study [23] concluded that the real reserve deployment will not

be able to cover the shortage or overcapacity for about two hours per day in average. Their

5760 hours of evaluation was not considered very robust to draw final conclusions and to

set long-term strategies, it was found that the results provided the information necessary to

enhance the optimisation task and follow it’s progress closely over some time.
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Mean Absolute Error (MAE): The average of all absolute errors for each forecast interval.   

Measures the average accuracy of forecasts without considering error direction.

 

Mean Absolute Percent Error (MAPE): This is the same as MAE except it is normalized by 

the capacity of the facility.

Root Mean Square Error (RMSE): Measures the average accuracy of forecasts without 

considering error direction and gives a relatively high weight to large errors

Root Mean Square Percent Error (RMSPE): As above normalize by plant capacity.

BIAS: Indicates whether the model is systematically under- or over-forecasting

Correlation: Correlation is a statistical technique that is used to measure and describe the 

STRENGTH and DIRECTION of the relationship between two variables.

r ( x , y )=
COV ( x , y )
STD x ⋅ STD y

=
∑ ( x− x̄ ) ⋅ ( y− ȳ )

N ⋅STD x ⋅ STDy

where f are the forecasted values, m are the measurements, COV is the covariance, STD is the 

standard deviation.

Standard Deviation: A measure of the spread or dispersion of a set of data. The more widely 

the values are spread out, the larger the standard deviation. It is calculated by taking the 

square root of the variance. 

STD=√(∑ (( f i− f̄ i )
2 )

n )
Variance: A measure of the average distance between each data point and the data mean 

value; equal to the sum of the squares of the difference between each point value and the data 

mean. 

σ
2=

∑ ( ( f i− f̄ i )
2)

n
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Chapter 1

Background and Objectives

1.1 BEFORE YOU START READING

This is the forth part of a series of four recommended practice documents that deal with
the development and operation of forecasting solutions in the power market. The first part
Forecast Solution Selection Process deals with the selection and background information
necessary to collect and evaluate when developing or renewing a forecasting solution for the
power market. The second part Design and Execution of Benchmarks and Trials, of the series
deal with benchmarks and trials in order to test or evaluate different forecasting solutions
against each other and the fit-for-purpose. The third part Forecast Solution Evaluation, which
is the current document, provides information and guidelines regarding effective evaluation
of forecasts, forecast solutions and benchmarks and trials.

1.2 Introduction

Meteorological measurements provide an independent measure of the wind and solar resource
and weather situation at any given time. This information can and is, as technology enhances,
not only an obligation that stems from technical requirements of the system operator, but is
also used to optimise the operation of renewable power plants and electricity grids. For both
the system operator and the power plant operator, these measurements are an independent
signal at the power plant that can warn about critical weather and provide an indication on
whether the power plants work at their expected performance level. For the transmission
system operator, such measurements can additionally be used for situational awareness of the
weather in the control area that may affect the transmission lines. They also provide a second
means of verification, whether the power signal at a given power plant is malfunctioning in
situations that may be critical in terms of grid operation.

Data assimilation with independent measurements from power plants have also been
tested by meteorological centres (e.g. [39, 21]). One of the most important findings so far is

1



2 Chapter 1. Background and Objectives

that the quality of data provided is the most essential issue to be solved in order to gain higher
quality forecasts with such measurements. In other words, if there is no specific effort put
into standardisation of requirements in the power industry, the benefits can not be achieved.

This recommended practice (RP) aims to provide background information on meteoro-
logical instrumentation, their recommended setup, maintenance, quality control and use in
the real-time environment of wind and solar power generation plants. Information on use
of real-time power and other operational data in forecasting systems is also included. The
document provides practical guidelines for quality control and recommended standards to be
applied in the setup and calibration of instrumentation when entering the operational phase
of wind and solar projects and for applications relevant to plant operators, system operators,
power traders or balance responsible parties.

1.3 Using this document

This document is structured such that the chapters are ordered following a decision making
process for the use of measurements for real-time forecasting applications.

• Meteorological instrumentation To forecast wind or solar power, meteorological
conditions such as wind speed or solar radiations need to be known. There are several
measurement devices in use, which all come with different properties and requirements.
Chapter 2 gives an overview of those instruments.

• Power measurements as a key input to very short-term forecasts (minute to hours
ahead) and to check the operational capacity and actual produced power produced to
validate forecasts. Chapter 3 gives an overview of relevant data types and useage.

• Setup and calibration When working with measurement data, it is crucial to follow
best practices for the measurement setup and to calibrate the instruments properly to
ensure the highest standard of data quality. Chapter 4 gives an overview of different
measurement setups and calibration procedures.

• Instrumentation performance There is a saying “he who measures measures garbage”,
meaning that measurements are prone to errors and therefore checking the performance
of measurement instrumentation and signals is crucial to ensure high quality of fore-
casts. Chapter 5 gives an overview of measures for quality control of measurements.

• Best practices Summary Chapter 6 is the short-cut to the recommendations in a
nutshell. Here, we collect and summarise all recommendations for all steps in the
use of measurements in real-time forecasting applications wihout explanations or
justification and link them to the respective backgound information.
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1.4 Use and Application of real-time Meteorological Measure-

ments

In this section, we will define and discuss the use of meteorological measurements for real-
time application and especially make the distinction to non-real-time use and applications
such as resource assessment.

1.4.1 Application-specific Requirements for Meteorological Data

Meteorological measurements made at the sites of current or future wind or solar generation
facilities can be used for several different types of applications. Although there are many
common requirements, there are significant differences in the required attributes of the
meteorological data gathering among these applications. The primary applications for on-
facility meteorological data are:

1. Short-term Forecasting

Short-term (minutes to days ahead)forecasting utilizes on-facility meteorological data
for the training of forecast systems ans well as input into the production of forecasts.
It is the "input to forecast production" application that creates the most significant
requirements since in order to have maximum value the data must be quickly quality
controlled and available to the forecast production process with minimal time lags.
This application is the primary focus of this document .

2. Resource Assessment

The resource assessment application employs meteorological data to generally assess
the generation resource over a region (resource mapping) as guidance for the planning
of future development or at a specific location (generation yield estimation)for the
purpose of estimating the fture production of a proposed project in order to assess its the
economic viability. This does not require near-real-time access to the meteorological
data .

3. Generation Asset Performance Assessment

The performance assessment application uses meteorological data to estimate the ex-
pected generation from a wind or solar facility in order to assess the performance
of the generation hardware at a specific facility relative to the manufacturer’s per-
formance specifications. This does not generally require near-real-time access to the
meteorological data

4. Turbine Control

The turbine control application is specific to wind generation facilities and uses me-
teorological data to optimally orient the turbine for maximum generation efficiency.
Typically only wind speed and direction data is required in real-time so that timely
adjustments to the turbine position can be made.
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5. Plant Monitoring and Situational Awareness

The plant monitoring and situational awareness application employ meteorological data
to facilitate the awareness of plant operators and possibly also grid system operators
to the operating status of the generation facility and the likelihood of very-short-term
changes in production. Meteorological data is employed as a independent check on
the generation and availability status of the facility and also to identify very short term
trends in the resource that may not be evident from the generation data (such as in the
case of wind generation facilities that are operating at rated power but may be near
thresholds sich as high speed shutdown). The near real-time availability of data is
important for this application.

A summary of the differences in measurement attributes among these applications is
provided in Table 1.1. The most significant point is that the short-term forecasting application
has specific requirements that are different from those of other applications and therefore
a meteorological measurement system designed primarily for use in a different type of
application may not be ideal or even adequate for short-term forecasting. :

1.4.2 Applications in System Operation, Balancing and Trading

The key applications in system operation, balancing and trading of wind and solar power,
where real-time meteorological measurements are required are:

• Situational awareness in critical weather events

Critical weather events can cause severe security risks in grid operation. Forecasting
and measurements assist to a large extend to make such events predictable and provide
the necessary information to be able to act in advance. Such situational awareness is
an important planning tool in grid operation, where penetration levels are above ca.
30% of energy consumption. Especially for wind generating power extreme winds
can only be predicted by meteorological signals, due to the flattening of wind power
curves in the wind ranges > 12m/s. In this range, the power signal provides no local
information to the system operator or the wind farm operator/balance responsible.

• High-Speed Shutdown events

During storm events, the critical parameter for the grid operation is the proportion of
wind farms that are expected to enter into high-speed shutdown (HSSD) in any high
penetration area. The risk and increased uncertainty for HSSD during storm events
can result in the System Operator having to limit the wind generation in advance so
that sufficient reserve is available.

• Grid related down-regulation or curtailments

Grid related down-regulations or curtailments can be due to extreme weather events
or technical problems at the electrical lines or controllers. Wind or solar radiation
measurements can provide an independent signal to the system operator on the available
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Table 1.1: Differences in required attributes of meteorological measurements among the major renewable energy

applications

Attribute Forecasting
Resource

Assessment

Performance

Assessment

Turbine

Control

Plant

Monitor-

ing

General
Availability in
near real-time

essential
not neces-
sary

not neces-
sary

essential essential

Availability in
extreme weather
conditions

essential not critical not critical essential essential

Measurement
bias

not critical if
trends are ac-
curate

near zero
bias critical

low bias im-
portant

not critical
not criti-
cal

Additional met
variables (other
than resource
variables)

useful espe-
cially in spe-
cific weather
scenarios

minimal
value

not needed not needed

useful
in some
weather
scenarios

Plant out-
ages/curtailment

essential not relevant not relevant not relevant useful

Wind Power related
Deployment lo-
cation considers
wakes

important not relevant not an issue not an issue
not criti-
cal

Solar Power related

Obstacle
Shading

must be rep-
resentative
of facility

must be rep-
resentative
of site

must be rep-
resentative
of facility

not applica-
ble

not criti-
cal

active power potential, where this is not broadcasted and also provide the possibility
to compute the lost power production due to the down/regulation.

• Short-term Forecasting with updates from measurements

Short-term forecasting with time horizons of minutes up to a few hours need to rely
on measurements as additional information to weather data from NWP models, due
to the 6-hourly schedule of most operational NWP model deliveries. Improvements
can however only be expected, if the real-time measurements to update the forecasts
have a sufficient quality. If too much of the data needs to be blacklisted, or the filters
have difficulties to capture erroneous measurement values, such data can actually make
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the forecast worse than without the additional data. Quality of these data is therefore
imperative.

• Intra-day Power plant balancing

Intra-day power plant balancing is equally dependent on a high quality measurement
data quality as the short-term forecasting, and usually relies on short-term forecasts.

1.4.3 Applications in Wind turbine and wind farm operation

The key applications for wind plant operation, where real-time meteorological measurements
are required, are:

• Wind turbine control

Due to wake effects on nacelle anemometer, independent site data from a met mast or
LIDAR can assist the turbine controller to work more safe and efficient. Preview infor-
mation of the turbine inflow from a nacelle-based lidar system can be used to induce
blade pitch action and thus reduce loads and improve turbine power performance.

• Wind farm control

Wake measurements of scanning lidars or nacelle-based lidars that measure the wake
of turbines, can assist to redirect those wakes and thus reduce loads on downstream
turbines and increase their power production.

• Condition Monitoring

Knowledge about the wind conditions that affect a wind turbine or wind farm help to
estimate the load budget that the turbines have experience during their lifetime. This
information can be used for lifetime extension measures thus increasing the energy
yield of a wind farm and its profit.

1.4.4 Solar/PV plant operation

The key applications for solar plant operation, where real-time meteorological measurements
are required are:

• Yield forecasting for the next minutes, hours and days

– ramp rate control in PV power plants

– dispatch optimisation of power plans with storage

– optimisation of power plant operation for thermal plants (e.g. start up decisions)

• Power Plant Control

– optimisation of tracking of tracked PV or concentrating collectors

∗ stow position for high wind speeds/gusts
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∗ optimal tracking angle for non concentrating tracked PV according to sky
radiance distribution and shading

∗ de-focusing of concentrating collectors at high DNIs

– mass flow control in thermal collectors

– aim point control for solar tower plants

Most of the real-time meteorological measurements are only required for large scale
power plants. For tracking collectors of any size wind speed and direction measurements
are required to allow for securing the collectors in the stow positions at high wind speeds.
Depending on the solar thermal technology also further meteorological measurements may
be required even for small systems.

In the handbook [55] and [56], it is noted that measurements of irradiance are complex
and more expensive as general meteorological instruments, especially for measuring direct
normal irradiance (DNI). The applications named in [55] and [56] developers utilise for
irradiance data are:

• Site resource analysis

• System design

• Plant operation

• Developing, improving and testing models that use remote satellite sensing techniques
or available surface meteorological observations

• Developing, improving and testing solar resource forecasting techniques.

1.5 Available and applicable Standards for real-time Meteoro-

logical and Power Measurements

There are to date no standards available that deal with real-time meteorological and power
measurements for real-time wind and solar forecasting applications. Nevertheless, there
are a number of standards available from the three areas of meteorological monitoring,
wind and solar power resource assessment and monitoring that provide useful guidelines for
measurement collection, monitoring, setup and calibration of instrumentation, verification
and validation of measured data etc. In this section we introduce existing guidelines and
standards from these three areas and analyse them for their applicability in real-time wind
and solar forecasting environments.

1.5.1 Standards and Guidelines for Wind Measurements

For resource or site assessment in the planning phase of a wind farm an IEC standard exists
[IEC, 2005] with an updated version 2 (IEC 61400-12-2:2013), that specifies which tests and
what kind of criteria the instrumentation has to fulfil when used for the required tests to be
carried out. The IEC 61400-12-2:2013 rules contain the following items:
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• Extreme winds
• Shear of vertical wind profile
• Flow inclination
• Background turbulence
• Wake turbulence
• Wind-speed distribution

The results of these tests have to be within a pre-defined range to be acceptable. In
Appendix F of the 61400-12-1:2005 "Cup anemometer calibration procedure" the calibration
of the instruments for measuring wind are specified.

The use of remote sensing for wind measurement was introduced in a new version 61400-
12-1:2017. In Annex L guidelines for the classifications of remote sensing devices, for the
verification of the performance and for the evaluation of uncertainties of the measurements
are given.

MEASNET (MEASuring NETwork), the "international network for harmonised and
recognized measurements in wind energy" has defined so called "Round Robin rules" for
calibration of cup anemometers for wind energy [MEASNET, 2009], which are widely used.
MEASNET has also under the EU project ACCUWIND published a number of guidelines
regarding instrument calibration and measurement campaigns for the wind industry (Dahlberg
et al., 2006, Pedersen et al. 2006, Eecen, 2006]. Lee [2008] found a way of calibrating wind
direction sensors with an optical camera.

In 2016 MEASNET published Version 2.0 of a Procedure for the evaluation of site-
specific wind conditions [41]. This document gives guidance on measuring wind character-
istics, and comprises an annex on wind measurement using remote sensing devices. It also
includes guidance on how to set up measurement campaigns depending on the data required.

IEA Wind Task 32 and Task 11 published recommended practices RP-15 for ground-
based remote sensing for wind resource assessment in 2013 [65]. It covers different aspects of
using lidars and sodars. An updated review version of 2020 [12] identifies recommendations
from the relevant normative documents (RP-15, MEASNET 2016, IEC 61400-12-1:2017
Annex L) concerning characterisation, installation, operation, data analysis and verification
of wind lidar .

The Annex D in IEC 61400-12-1:2005 standard states that the "implicit assumption of
the method of this standard is that the 10 min mean power yield from a wind turbine is fully
explained by the simultaneous 10 min mean wind speed measured at hub height, and the
air density" [IEC, 2005, Annex D, Table D.1] and describes the associated measurement
uncertainty evaluation principles. In this respect, the standard refers to the "ISO Guide to
the expression of Uncertainty in Measurements" [20, 6], and its 2 supplements [59, 60]
from the Joint Committee for Guides in Meteorology (JCGM), where there are two types
of measurement uncertainty that are to be accounted for in any standardised measurement
taking:

1. systematic errors, often associated with offsets/bias of the measured quantity



1.5. Available and applicable Standards for real-time Meteorological and Power Measurements 9

2. random errors, which are associated with the fact that 2 measurements of the same
quantity are seldom the same

In section 3.1.2 of the guide, [[59, 60] it is stated that "the result of a measurement ..
is only an approximation or estimate .. of the value of the measurand and thus is complete
only when accompanied by a statement of the uncertainty ... of that estimate". Considering
this definition, all measurements should ideally have an uncertainty term associated with it.
This is impractical in real-time operations, where the value of the measurements lies in the
availability of the data at a given time. Therefore, it is unrealistic to request uncertainty
measures. However, it could be a standing data value that is determined at the setup of the
instrument and provided as part of the standing data. In that way, the instrument specific
uncertainty could be accounted for in the handling of measurements (for other mitigation
methods see 5.3.2.

In the introduction to the Guide [6], it is stated that ..the principles of this Guide are
intended to be applicable to a broad spectrum of measurements, including those required for:

• maintaining quality control and quality assurance in production

• complying with and enforcing laws and regulations

• calibrating standards and instruments and performing tests throughout a national

• measurement system in order to achieve tractability to national standards developing,
maintaining, and comparing international and national physical reference standards,
including reference materials

To summarise, the handling and integration of wind power into the electric grid is an
equally important step to harness the full potential of the energy resource in an efficient and
environmentally friendly way.

This requires that measurements are trustworthy and maintained to a quality that allows
for their use in forecasting tools in order to produce high quality forecasts and thereby reduce
the need of reserves. These guides in combination with the IEC 61400-1 standard would
provide a good foundation for any grid code technical requirement specifications.

1.5.2 Standards and Guidelines for Solar Measurements

A general guideline for meteorological measurements for solar energy is available in the IEA
PVPS handbook [56]. The handbook summarises important information for all steps of a
solar energy project - reaching from required measurements and the design of measurement
stations to forecasting the potential solar radiation. Measurement instruments and their
application as well as other sources for solar measurement data are presented. The handbook
links to relevant further standards and guidelines. Here we briefly summarise those standards
and guidelines that are relevant for real-time applications. For resource assessment purposes,
we refer to the IEA PVPS handbooks original Version [54], version 1[55] and 2 [56].
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One of the frequently cited guidelines for measuring radiation is chapter 7 of the WMO
CIMO guide [66]. There, guidelines are presented for meteorological measurements in
general which mostly apply also for solar energy related measurements. However, some
guidelines are different for solar energy as the conditions relevant for the power systems
must be measured. For example, these conditions are often affected by nearby objects such
as the solar collectors themselves, trees or buildings which should be avoided for other
meteorological measurements.

In the ISO 9060 standard radiometers are classified according to their measurement errors
caused by different effects, such as sensor temperature, or calibration stability. Classes are
defined for both pyranometers (used to measure global radiation of the hemisphere above the
sensor) and pyrheliometers (used to measure the direct normal irradiance). There are several
ISO and ASTM standards for the radiometer calibration (ISO, 9059, ISO 9847, ISO 9846,
ASTM G207, ASTM824, ASTM167). Guidelines for the application of pyranometers can
be found in ISO 9901 and guidelines for the application of pyranometers and pyrheliometers
are found in ASTM 183.

IEC 61724 on PV system performance monitoring describes how radiometers and other
meteorological instruments should be integrated and used in PV plants. Accuracy classes
of the resulting monitoring systems are defined. Also the number of sensors depending on
the peak power of the PV system is given. Additionally, the standard defines cleaning and
calibration intervals for pyranometers.

1.6 Standards and Guidelines for general meteorological mea-

surements

As mentioned in section 1.5.1 and 1.5.2, the Guide to Instruments and Methods of Observation

from the WMO (world meteorolgy organisation) [66] is standardising instrumentation for
surface winds in chapter 5 and for radiation in chapter 7. Other meteorological parameters
covered in the WMO Guide are measurement of:

• Surface and upper air temperature ([66] in chapter 2 and 10)

• Atmospheric and upper air pressure ([66] in chapter 3 and 10)

• Surface and upper-air Humidity ([66] in chapter 4 and 10)

• Surface and upper air wind ([66] in chapter 5 and 13)

• Sunshine Duration (([66] in chapter 6)

• Visibility ([66] in chapter 8)

• Evaporation ([66] in chapter 9)

• Clouds (([66] in chapter 15)
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• Atmospheric Compisitions ([66] in chapter 16)

The United States Environmental Protection Agency (EPA) provides a Meteorological
Monitoring Guidance for Regulatory modelling Applications [42], which is a guideline on
the collection of meteorological data for use in regulatory modelling applications such as
air quality. It provides recommendations for instrument, measurement and reporting for
all main meteorological variables used in meteorological modelling. In Section 4 of the
guideline, the EPA provides recommended system accuracies and resolutions for especially
wind speed, wind direction, ambient and dew point temperatures, humidity, pressure and
precipitation, which are useful for wind and solar applications as well and will be discussed
in the measurement setup and calibration section 4.

These guidelines and recommendations have been assessed for the purpose of wind
and/or solar projects and have been basis for a number of our best practice recommendations
in section 6.

1.7 Data Communication

An important component of the gathering of on-facility meteorological data for short-term
forecasting is the timely retrieval of the data from the sensors and dissemination to the forecast
production process. This requires efficient and standardized data communication protocols
and well-documented descriptions and formats of the data elements so that the data can be
correctly and efficiently interfaced with the forecast production process. Part of this process
will be dictated by the type of sensor hardware and software used to make the measurements
and retrieve the data from the sensor site.
However, there will typically also be a component of that process that provides an interface
between the process that gathers data from the sensors and the process that disseminates data
to the forecast providers. Proposed standards and options for the data descriptions, format
and exchange protocols for the latter process are presented in section 4 of this Recommended
Practice Part 1 “Forecast Solution Selection Process”.





Chapter 2

Meteorological Instrumentation for real-

time operation

Key Points

In this section currently applied as well as instrumentation that is under development

is being described...

The purpose of meteorological measurements as supplement to the power measurements
at wind and solar plants is to provide a measure of the resource and weather situation at
the specific location and any given time. This information should not only come from an
obligation to wind and solar plant operators defined in the technical requirements of system
operators, but has equally much become a tool to optimise the operation of wind turbines
and solar plants by the operators.

For both the system operator and the plant operator, these measurements are an indepen-
dent signal at the plant location that can warn about critical weather and provide an indication
on whether the wind turbines and solar panels work at their expected performance level. For
the transmission system operator, such measurements can additionally be used for situational
awareness of the weather in the control area that may affect the transmission lines. They
also provide a second means of verification, whether the power signal at a given wind or
solar plant is malfunctioning in situations that may be critical in terms of grid operation.
Meteorological centres have also shown an interest in these data for the data assimilation
of the numerical weather prediction models (e.g.[39, 21]) that typically lack observational
information at hub heights.

One of the most important findings so far has been that the quality of data provided
is the most essential issue to be solved in order to gain higher quality forecasts with such
measurements. In fact, it has been identified that if there is no specific effort put into
standardisation of requirements in the power industry, the benefits cannot be achieved.

The following is a list of typical instrumentation used for wind and solar projects that

13
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will be subject for this recommended practice guideline and recommendations made in how
to setup these instruments and which implications the use of the various instruments have on
data quality and usability in the operational real-time context in the energy industry.

2.1 Instrumentation for Wind projects

Typical instrumentation for meteorological measurements in wind power context are divided
into two categories:

• Met mast

1. Lattice masts
2. Telescope masts

• Steel cabinet

1. Data logger
2. Communication system
3. Components for the power supply
4. Additional system components

– Anemometers
– Wind vanes
– Temperature humidity sensors
– Air pressure sensors
– hygrometer sensors
– precipitation sensors rain gauges

• Remote Sensing Systems

1. LiDAR

– Wind Profiling LiDAR

– Scanning LiDAR (Long-Range and short-range)

– Nacelle-based LiDAR

2. SoDAR

Not so common instrumentation or additional instrumentation for wind farms are:

• Microwave Radiometers (measures energy emitted at sub-millimetre-to-centimetre
wavelengths at frequencies of 11000GHz)

• Ceilometer (light source to determine the height of a cloud base. Ceilometers can also
be used to measure the aerosol)

• Microbarographs (measures atmospheric pressure)

These instrumentation are more commonly used in research measurement campaigns
and in meteorological projects. Literature on these types such as microwave radiometers are
described by e.g. [62, 40], for ceilometers by [49], or microbarographs by [48].

Meteorological mast are still the most commonly used measurement instrumentation for
the planning phase and operation of wind farms. An example is shown in Figure 2.1.
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Figure 2.1: Example of a typical met mast with various instrumentation, data logger, power supply and wiring.
Typical instrumentation are cup anemometers or sonic anemometers, wind vanes, temperature, pressure and air
density sensors, pyranometers and precipitation and humidity sensors.

2.1.1 Remote Sensing Instrumentation for wind farms

Remote sensing has a long tradition in geology, atmospheric science, hydrology and oceanog-
raphy and other earth sciences. The earliest remote sensing "devices" were aerial photography
that was analysed with the heights and the geographical space in which the pictures were
taken.

Today, remote sensing devices are used in wind energy applications to measure wind
speed and direction [13]. They emit radiation or sound that interacts with the atmosphere,
e.g. with aerosols that move along with the wind speed. The sensor measures the signal that
is reflected or back-scattered from the particles and has experienced a frequency shift due
to the Doppler effect. The frequency shift is proportional to the line-of-sight (LOS) wind
speed along the direction of the emitted beam. Horizontal wind speeds and directions are
determined then determined using wind field reconstruction algorithms.

Examples of such devices are RADARS (Radio detection and ranging Sensor), SODARS
(SOund Detection and Ranging Sensor) and LiDAR (Light Detection and Ranging Sensor).
These sensors can be deployed on the ground, on aircraft or satellites. For wind energy
applications such as site assessment, mostly ground-based devices are used that measure the
LOS wind speed vertically and then a horizontal wind speed and wind direction is derived.
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The quality of remote sensing data is very much dependent on its spatial, spectral, radiometric
and temporal resolutions.

Figure 2.2: Principle of the remote sensing devices scanning. Picture shows a Windcube from Leosphere.

Ground based remote sensing in wind energy has until recently mostly be driven by a
desire to find alternative measurements for expensive and at times difficult installation and
erection of met masts. Especially with increasing hub heights, met mast heights have grown
to a size, where the erection requires planning permission and cranes of significant size.
Hence, it has become so expensive that previously never considered alternatives from the
remote sensing area have become price competitive.

The main driver of recent developments has been the competitiveness in price, the ease
of installation and the increasing heights of wind turbines and size of the projects, where
it is often no longer sufficient to measure at only one site. Nevertheless, the disadvantage
of not directly measuring the target value is still present [68]. With increasing experience
and technical advances in computational science and technology, the remote sensing devices
have however become a real alternative.

This has also been reflected in the IEC 61400-12:2005 standard, where remote sensing
devices have been incorporated as possible devices to carry out wind measurements for wind
energy applications in the 2017 update (IEC 61400-12:2017).

Looking at the benefits outlined by manufacturers and users of remote sensing devices the
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following list of key advantages of using remote sensing devices in wind energy applications
can be summarised to:

• Minimal environmental impact

• Short installation time

• Highly portable

• Short lead times

• Wind profiling over the whole rotor area up to 300m

• Flexible measurement heights

The main technical advantage to be considered is the ability to measure over an area or
volume rather than at pre-defined fixed heights above the ground. This is also how forecasting
models work. NWP models compute variables across grid cells as area averages and area
verification of variables are widely applied for model verification in meteorology.

The drawbacks of remote sensing devices so far have been for both SODAR and LiDAR
inaccuracies of signals in complex terrain. According to the white paper of the Deutsche
Windguard and DTU [5] and also Bradley [11], especially "in complex terrain sites, influ-
ence of the relatively large scanning volume of LiDARs and SODARs must be carefully
considered in terms of its influence on the measurement accuracy.". This has been a general
observation and a large research topic [see e.g. [19, 11, 10, 38, 28]]. Issues and preliminary
recommendations of using lidar in complex terrain are summarised by a group from IEA
Wind Task 32 in [3]. The task also formed a working group which is carrying out a group
study on several different transfer methods for the use of lidar in complex terrain. Results
are expected in 2021.

When used in real-time applications, remote sensing devices require special treatment.
Due to the physics of the measurement principle, the measurement availability is depending
on environmental conditions [67]. If there are too many (fog) or too few aerosols in the
atmosphere (after a rain shower), a LiDAR does not provide a useful signal. Filter algorithms
need to detect these data gaps and the real-time forecast algorithms needs to be able to handle
them. The common findings of all the experimental measuring campaigns as well as real-
time testing is that the instruments need to be well serviced and are maintained similar to any
other real-time instrument operating under changing conditions throughout the yearly cycles.
If this is not done, echoes, interfering noise sources, laser beam disturbances deteriorate the
instruments and make the further processing of the data impossible. It is also commonly
understood that it requires skilled personnel to install and maintain such instrumentation, if
it should run continuously and reliably. For a real-time application it is additionally crucial
that the measurement signals can be used as is and need no further processing.

2.1.2 Nacelle instrumentation and measurements

Among the nacelle measurement devices there are three types that are commonly used:
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• cup anemometers

• horizontally mounted LiDAR

• (ultra-) sonic anemometers

Figure 2.3: Schematic of the nacelle mounted instruments cup anemometer, LiDAR and iSpin ultra-sonic
anemometer. The latter two instruments look forward into the wind eye and cover the rotor swept area.

.
Figure 2.3 shows a schematic of the instruments and how and where they are mounted at
the turbines nacelle. The cup or (less often) sonic anemometers are typically mounted at
the back of the nacelle. The horizontally mounted LiDAR is mounted approximately in the
middle of the nacelle with a slight displaced angle in order to cover the total swept area of
the rotor upwind of the turbine. The iSpin ultra-sonic anemometers are mounted at the front
of the spinner, measuring wind characteristics directly in front of the rotor.

2.1.3 Cup anemometers

Most commonly cup anemometers with wind vanes for direction measurements are installed
at the nacelle. There are the IEC 61400-12-1, the 61400-12-2 and the ISO/IEC 17025
standards that describe how these instruments must be calibrated and mounted as well as
describing the process and the integrity of the measurement processes and design of the
mast, instruments and measuring procedures. This will also be discussed in the standards
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analysis in Section ??. In this section, we only discuss, whether and how the data from cup
anemometer instrumentation at the nacelle can add value to forecasting.
The cup anemometers at the nacelle have one distinctive advantage over any other instruments:
they are installed at the turbine and connected to the SCADA system that is delivering data
to the system operator. However, this advantage comes with a downside: the measurements
taken at the nacelle are affected by two major disturbances: (1) the rotating turbine blades,
which extract energy from the wind speed and increase turbulence and (2) wake effects from
other upstream wind turbines. To counteract (1) the cup anemometers are usually calibrated
with a nacelle transfer function which transfers the signal measured behind the rotor into a
free stream measurement. However, in the worst collection hours both phenomena disturb
the signal of the nacelle instrument and the signals can cause deterioration of the forecast, if
they are used in the data assimilation phase.

Figure 2.4: MEASNET certified cup anemometer from Cambell Scientific and a cup anemometer 40C from
RNRG.

2.1.4 Sonic and ultra-sonic anemometers

The sonic and ultra-sonic 3D anemometers have a long tradition in atmospheric science and
meteorology in relation to boundary layer studies of turbulence intensity and phenomena like
low level jets. These instruments are well tested and can be used for real-time operations,
but are mostly considered too expensive for traditional wind measurements [e.g. Berg et al.
2012, Popinet et al., 2006, Basu et al., 2004, Lundquist, 2014].

Figure 2.5 shows a mast with an ultra-sonic anemometer at the NREL test site in Golden,
Colorado and a well-tested 3D sonic anemometer from Campbell Scientific.

A newer type of sonic anemometer are the so-called ultra-sonic 3D spinner anemometer
instruments, short iSpin, which have found their way into instrumentation for wind energy.
Figure 2.6 shows the principle of the iSpin anemometer from ROMOWind and an installed
spinner anemometer example from METEK. With the update of the IEC standard 61400-
12-2, the iSpin technology has become part of the measurement types to define the absolute
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Figure 2.5: Example of a 3D ultra sonic anemometer and a propel anemometer at the NREL test site in Colorado
(left) and a 3D sonic anemometer from Campbell scientific (right).

power curve. The iSpin technology strictly speaking are sonic anemometers that are mounted
at the tip of the spinner of the rotor, in front of the turbine blades, looking forward in wind
direction and rotating with the blades. This means that the velocity of the rotating blades
is taken into the computation of the signals and wake effects and yaw misalignment are
measured instead of the signal being disturbed by the rotating blades.

There are a number of studies that have been carried out since 2011, when the instruments
were first launched by ROMO Wind. Reviews made by DNV GL [22] and ECN [63] provide
a comprehensive overview of the technology and it’s development from 2011 to today.

DTU Wind (Risø) has published documents describing the technology characteristics and
basic principles [23, 24, 58]. The so-called spinner ultra-sonic 3D anemometer technology
iSpin has been installed for the first time in 2016 on a fleet of wind turbines in Denmark.
The iSpin devices are delivered, implemented and maintained by ROMOWIND [30, 29].
ROMOWIND run an open-access project that was supported by the Danish EUDP program
where data was collected from 1st November 2014 to 17th December 2015. A follow up
research and demonstration project “Open access to data from the Performance Transparency
Project” (PTP) provides access to data from the iSpin technology to Wind turbine performance
evaluations in all terrains . The project is a systematic demonstration project for wind
measurement systems with around 90 iSpin systems on wind turbines in 9 different wind
farms, 3 different turbine types, each of them installed at wind farms in 3 different terrain
classes like flat, semi-complex, complex or offshore [4].

2.1.5 Horizontally mounted nacelle LiDAR

Another nacelle mounted wind measurement device is a horizontally mounted LiDAR at
the turbine nacelle. Theoretically, every LiDAR can be mounted in that way. However, the
space and requirements on top of the wind turbine are very different to the ground. There are
several commercially available instruments on the market at present (Figure 2.7). All belong
to the remote sensing devices, are compact in form and are able to measure the wind speed
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Figure 2.6: Ultra-sonic anemometer spinner technology iSpin from ROMO Wind as schematic and also an
example of a nacelle top mounted from METEK (bottom right).

upstream of the turbine in several distances in front of the rotor. The devices are typically
mounted at the back of the nacelle similar to the classical cup anemometer. Because nacelle
lidars measure the wind speed at several points and in several distances upstream of the
rotor, they are able to measure wind characteristics such as shear over the whole rotor plane.
They are also able to measure the wind before it actually impacts the turbine operation, thus
gathering preview information of the wind characteristics. This makes the instrument an
interesting device not only for performance measurements, but also for forecasting.

Figure 2.7: Example of nacelle mounted LiDAR WindCube Nacelle (left) and ZX TM (right).

The advantages of nacelle lidars can be summarised as follows:

• compact and small devices
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• measurement of turbine inflow at several distances in front of the rotor over the whole
rotor plane

• measurement of wind characteristics such as shear and TI

• detection of yaw misalignment

• preview information of the inflow of the turbine

It should be noted however, that the turbulence intensity measured by a lidar is not the
same as the one provided by a cup or sonic anemometer. Due to the measurement volume
of the lidar, which acts as a low pass filter for the measured wind speed fluctuations, the
measured turbulence is smaller. However a recent study shows that "the lidar-based along-
wind unfiltered variances with those from a cup anemometer installed on a meteorological
mast close to the turbine shows a bias of just 2%" [50].

2.2 Instrumentation for Solar Projects

The “Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar
Energy Applications” (referred to also as “PVPS solar resource handbook”) [56] presents
detailed descriptions of the relevant meteorological measurements and specific references
to even more detailed publications. Here, the focus is on those instrumentations relevant to
real-time forecasting purposes as defined in section 1.4.4.

Different applications may require different and specific measurements in order to get
relevant irradiation information from a solar site. With the sun’s radiation reaching the earth’s
surface

• Direct Normal Irradiation (DNI)

• Diffuse Horizontal Irradiation (DHI)

are linked through the equation for Global Horizontal Irradiation (GHI):

𝐺𝐻𝐼 = 𝐷𝐻𝐼 +𝐷𝑁𝐼 × 𝑐𝑜𝑠(𝜃) (2.1)

where 𝜃 is the solar zenith angle, GHI is the global horizontal irrandiance, DHI is the Diffuse
Horizontal Irradiation and DNI is the Direct Normal Irradiation. On a sunny day, it can be
assumed that the insolation is 100% GHI with 20% DHI and 80%𝐷𝑁𝐼 × 𝑐𝑜𝑠(𝜃).

There are various components that can and others that are recommended to be measured
at a solar plant, where solar energy forecasting is at stake. The most common measurements
that are relevant for solar energy forecasting are GHI and DNI, as as DHI can be easily
computed from the other two components, but not so easily measured.

1. System components for Radiation Measurement:



2.2. Instrumentation for Solar Projects 23

(i) Data logger

(ii) Steel cabinet with solar power supply and communication system

(iii) Pyranometer

(iv) Pyrheliometer

(v) Optional:

(a) 2 solar reference cells (horizontal and tilted)

(b) Pyranometer tilted in same angle as solar module to measure GTI

(c) Rotating Shadowband Irradiometer to measure GHI, DHI (DNI calculated)

(d) Delta-T SPN1 Pyranometer to measure GHI, DHI (DNI calculated)

2. Meteorological representation of a site for forecasting by a “Met Station”:

(i) Ambient temperature

(ii) Wind speed and wind direction

(iii) Air humidity

(iv) Air pressure

(v) Precipitation amount and frequency

(vi) Soiling

The instrumentation and relevant parameters for these components are:

• Met Stations:

– solar irradiance (various components)

– Wind Speed anemometers

– Ambient Temperature and Relative Humidity sensors

– Atmospheric Pressure sensor

– Precipitation sensor or gauge

– Aerosols and Water Vapor

• Radiation Measurements:

– Spectral Irradiance

– Ultraviolet Irradiance

– Soiling

– All sky imagers

– Circumsolar Radiation

– Beam Attenuation Between Heliostats and Receiver in Tower Power Plants
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Figure 2.8: Application of different data sources in the frame of short-term PV forecasting. Persistence in this
case encompasses time series based statistical methods in general; Cloud camera is a different denomination for
all-sky imager.

– Surface Albedo measurement/calculation

For the purpose of short-term solar forecasting, the optimal use of different instruments
and data can be viewed as a cascade, as indicated in Figure 2.8. When targeting a particular
range of forecast horizons for a given application, this should be taken into account before
excessive instrumentation is deployed.

The corresponding instruments are described in more detail in the following sections.

2.2.1 Point Measurements

Most instruments used for solar energy provide point measurements. For example a pyra-
nometer measures the solar irradiance (units W/m2) incoming from the hemisphere above
the sensor plane using a roughly 1cm2 sensor element. Compared to the size of the solar
power plants or pixels of satellite derived irradiance data this area can be described as point
like. Pyranometers can be used to measure GHI (global horizontal irradiance) if they are
installed horizontally facing the sky or GTI (gloabl tilted irradiance) if installed tilted. GTI
is also called POA (plane of array irradiance) if it refers to the plane of the solar collectors.
Pyranometers can also be used to measure the DHI (diffuse horizontal irradiance), if they
are shaded by a specific shading structure. Such a shading structure can be a shading ball or
shading disk tracked according to the solar position by a solar tracker. Also shading rings are
used at times, but the accuracy of such systems is lower as they cover not only the sun, but the
whole daily solar path as seen from the pyranometer which also excludes part of the diffuse
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radiation form the measurement. In order to measure the albedo the GHI can be compared
to the RHI (reflected horizontal irradiance) which is measured by a horizontally mounted
ground facing pyranometer. Reference cells can be used to measure the GTI. Actually the
measurement signal of the reference cells is only an approximation of the GTI, but it is helpful
as it closer to the power generated by a PV module than the GTI itself. This is because the
spectral and incidence angle behaviour of reference cells are quite similar to PV modules
of the same PV technology. To measure DNI (direct normal irradiance) a pyrheliometer on
a sun tracker can be used. As solar trackers are expensive and as they require a significant
maintenance effort, also other instruments exist that allow the determination of the DNI.
Such instruments are for example RSIs (Rotating Shadowband Irradiometers) that consist of
a horizontally levelled pyranometer and a shadowband, that rotates around the pyranometer at
times, e.g. each minute. While the shadowband is beneath the sensor plane the pyranometer
measures GHI. During the rotation the shadowband shades the pyranometer at some point
and then DHI is measured. The DNI can then be derived using the DHI, GHI and the solar
elevation angle. Also, systems of several pyranometers under a specific shading mask can
be used to measure DHI and GHI (SPN1). Further approaches to avoid solar trackers e.g. by
using sunshine duration sensors also exist.

Soiling measurements can be done by measuring the short circuit current of a pair of
reference cells if one of the cells is cleaned and the other not. The approach can also be
used with a pair of PV modules. Specific soiling sensors with active light sources or camera
systems are also used.

For concentrating systems the measurement of circumsolar radiation can be beneficial.
This can be done with rotating shadowband irradiometers, pyrheliometers with different
acceptance angles or special camera systems. For solar tower plants further measurements
are of interest to provide information on the beam attenuation between the mirrors and the
receiver.

The further instrumentation for point measurements with anemometers, temperature
sensors, pressure sensors, hygrometer sensors and precipitation sensors has bee described
above related to met masts.

2.2.2 All sky imagers

All sky imagers (ASI) are cameras that take photos of the hemisphere above the ground.
ASIs are used to provide nowcasts of the solar irradiance for the next 10 to 30min. Most
ASIs use fish eye lenses to obtain such photos, but systems using curved mirrors are also
used at times. The sky images can be common RGB photos, or infrared images. Clouds
can be seen in the photos and they can be detected and even classified by image processing
and/or machine learning techniques.

A physical approach may use image series with one photo e.g. every 30 seconds to
derive the cloud motion vectors of individual clouds or groups of clouds. Assuming that the
clouds will not change their form and velocity their position can be predicted. Some ASI
forecasting systems also include estimation of the change of the cloud’s form and size. As
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only a limited area is covered by an ASI the forecast horizon is not long, and the actually
reached forecast horizon depends on the cloud speed and cloud height. The effect of the
clouds on the irradiance can also be estimated e.g. based on the combination of the ASI
photo with co-located radiometers and considered for the nowcast. If more than one ASI is
used also the cloud height can be determined using stereophotography. With such a cloud
height measurement, alternative measurements or estimations of the cloud heights ASIs also
allow to derive spatially resolved maps of the solar irradiance. Such maps can then also be
predicted for the forecast horizon.

Figure 2.9: Example of a machine learning model for nowcasting solar irradiance based on all sky images [53].
A series of cylindrically transformed ASI images is first compressed via a series of convolutional neural network
layers. The resulting features are processed by a recurrent LSTM [27] layer, which remembers the evolution of
the cloud field. Some fully connected layers can be used to incorporate other, low dimensional input data and
assemble an irradiance or power forecast over the next few minutes.

With only a single ASI available at the site in question, an alternative approach is to use
machine learning (ML) for discerning patterns in the cloud field. As a data driven approach,
this typically requires several weeks or months of ASI images plus corresponding irradiance
and/or PV power measurements. Using image processing (convolutional) neural networks
and related techniques – which in recent times received a lot of research attention, e.g. in
the contexts of face recognition and autonomous driving – the motion and transformation
of the cloud field and its impact on the target quantity can be learned, to a certain degree.
Figure 2.9 shows an example of such an ML model. Note however that there are many
different ways of setting up such models, and a single best practice can not yet be identified.
Still, in view of increasing data volume and computation power, as well as the lower on-site
hardware requirements, this approach may be worthwhile to investigate for some projects.
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Figure 2.10: Evaluation of the ASI-based 5 minute forecast model from Figure 2.9 (labeled one-by-one cam-

image) and three other models, which vary image treatment and the internal neural network structure. At high
sun elevation, the errors due to moving clouds are most pronounced, as is the improvement gained by the ASI
forecast.

In Figure 2.10, part of the evaluation of the described example nowcast model is shown.

To summarize, ASIs can help to operate solar power plants and electricity grids better,
as the spatial and temporal variability of the solar irradiance can be captured and predicted.
This is for example interesting to avoid high PV power ramps that might cause technical
issues in the grid or that might be regulated by law and connected to fines. More information
on ASIs and their application can be found in the “PVPS solar resource handbook” [56]
including several references for further reading.

2.2.3 Satellite Data

Due to the global coverage of the earth with geostationary weather satellites (except at very
high latitudes), it is relatively straightforward to obtain satellite-based solar irradiance data
for any given PV project. Both GHI and DNI, plus sometimes other components of the
radiation field are available. Surface irradiances are typically produced from multispectral
satellite images using one of the many variants of the HELIOSAT method.[e.g. 52] The
general idea here is that clouds as seen from the satellite are always brighter than the surface.
Thus the amount of cloudiness at a fixed location (i.e. pixel) can be estimated from the
difference between the albedo observed by the satellite, and the lowest albedo observed for
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this location during the course of (typically) a month. Surface irradiance is calculated from
a clear-sky model, and then reduced by factoring in the satellite derived cloudiness. Of
course, the more recent HELIOSAT methods also take into account changes in atmospheric
composition, surface snow and ice, slanted viewing geometries and other factors.

While using satellite data for PV power resource assessment is standard practice, its
application to short term forecasting is not quite as common. Except for some rapid scan
areas, most of the globe features image update rates of 15 min, but some areas are only
provided new images once per hour. Similar to processing ASIs, cloud motion vectors can
be calculated from sequential images, and used to provide short term forecasts of cloudiness
and hence, surface irradiance. Again, part or all of these calculations can be supplanted with
machine learning techniques if sufficient training data are available.

Figure 2.11: Forecast error for different input data combinations in an ML-based irradiance forecast model. sat

and sat*: different satellite data setups, cc: cloud camera, live: live data from the pyranometer.
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However, in contrast to ASIs, data from meteorological satellites is constantly being
assimilated into weather forecast models. Hence the advantage of using real-time satellite
data diminishes within the first few forecasted hours, if NWP forecasts are also utilized.
To illustrate this point, Figure 2.11 shows the contributions of different types of sensor and
model data in a short-range forecast experiment. Note that this model was not tuned towards
very short term accuracy and uses a simplified ASI processing method. Still, the contribution
of the inputs towards error reduction is clearly seen, as well as the typical relaxation towards
the pure NWP-based forecast at longer forecast lead times.





Chapter 3

Power Measurements for real-time op-

eration

Key Points

• Live power production data are a valuable input to very short-term forecasting

systems, especially those with frequent updates and high temporal granularity

• Additional operational data such as plant set-points, operational capacity,

and Power Available signals are critical for robust forecasting and forecast

evaluation

• Real-time data should be collected at the same or higher temporal resolution

and frequency than that of the desired forecasts

Real-time vs non-real-time...
In real-time forecasting systems rely on input data that are highly correlated with future

values of the the quantify to be predicted. In the case of wind and solar power, recent
measurements of power production are highly correlated with future measurements on very
short time scale, those from seconds to minutes and hours ahead. Furthermore, as these are
measurements of the target variable itself, they are not subject to errors from data processing,
such as mathematical models of the weather-to-power conversion process, which may be
applied to recent weather observations for example. Therefore, real-time measurement of
power production can be extremely valuable inputs for forecasting systems. Furthermore,
as wind and solar plants are subject to partial or complete outages due to maintenance or
instructions from network operators, data describing the operational capacity of a plant are
also critical for successful forecasting.
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3.1 Live power and related measurements

Real-time measurements of power production from wind and solar farms are a valuable
input to very short-term forecasting systems, those with lead-times of minutes to hours
ahead. This and related data can also assist monitoring of plant availability, which is
important for operational forecasting. Real-time power data has the potential to significantly
increase the accuracy of very short-term forecasts compared to those based on Numerical
Weather Prediction and/or those which incorporate real-time meteorological data. Power
measurements have the advantage of being the quantity that is being forecast and therefore
not subject to errors when converting wind speed to power, for example. However, power
production is affected by non-weather effects, such as control actions from system operators,
which should be accounted for by forecasters.

Power production may be measured at multiple points between individual generators
(individual wind turbines or solar panels) and the point of connection to the electricity
network. In the majority of cases, the energy metered at the connection point and used in
settlement of the electricity market is the quantity to be forecast. Accuracy standards for
settlement meters are generally high, and live data are typically available to at least the plant
and relevant electricity system operator. Power from individual generators or other points
in a wind or solar park’s internal network will be subject to losses so will not match the
settlement meter. This data may however be utilised to improve forecasts.

Temporal resolution is an important factor when considering the use of live data in
forecasting systems. Different users may be concerned with power/energy production on
different time scales. Market participants’ primary concern is energy in a given settlement
period, which differ in length between countries/regions, and between financial products
for energy and other services, such as reserve products. Settlement periods with 5, 15,
30, 60, 240 minute duration are common. System operators, on the other hand, may be
more concerned with shorter periods (one minute or less), or even instantaneous power, for
balancing purposes. In practice, instantaneous is difficult to define and measure, and may
therefore be be approximated by averaging over a short time period or filtering/smoothing.
Real-time data should be collected at the same or higher resolution than the user requires
for their forecasts. If the user requires forecast for each 15 minute period, data should be
gathered at 15 minute resolution or higher. Higher resolution data also enables more frequent
updates to forecasts as new data becomes available more frequently.

A list of common measurements and their potential uses in forecasting systems is provided
in Table 3.1, and are discussed in more detail in the following section. In general, they are
collected by the plant’s Supervisory Control and Data Acquisition (SCADA) system, or by
dedicated metering/monitoring devices that communicate with the electricity system and/or
market operator.
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Table 3.1: List of power-related quantities measured at wind (W) and solar (S) plants that have a role in
forecasting and examples of how they may be used.

Quantity Wind (W)/
Solar (S)

Location Use

Active Power W&S SCADA or Con-
nection Point

Input/feature in very short-term forecast-
ing models, indicator of plant availability
if combined with meteorological measure-
ments

Plant Effective Ca-
pacity (live and fu-
ture)

W&S SCADA, operator
systems (some-
times submitted
to TSO/market
operator)

Forecast input and quality control

Controller Set-
point

W&S SCADA Flagging curtailment and other control ac-
tions

Capacity in opera-
tion

W&S SCADA Scaling forecast based on available capac-
ity

Voltage W&S SCADA or Con-
nection Point

Flagging plant unavailability

Status of breakers W&S Flagging plant unavailability
Temperature W&S Plant Forecast input: PV efficiency, snow, icing
Wind Speed W Turbine SCADA or

Met Mast
Forecast input and quality control

Wind Direction W Turbine SCADA or
Met Mast

Forecast input and quality control

Wind Turbine Yaw
Angle

W Turbine SCADA To check alignment of wind vane(s) and
other data quality control

High Speed Shut-
down Flag

W Turbine/Plant
SCADA

Forecast model training and evaluation

Icing Shutdown
Flag

W Turbine/Plant
SCADA

Forecast model training and evaluation

Horizontal direct
solar radiation

S Plant Forecast input and quality control

Panel Tilt S Plant Forecast input and quality control
Sky images S Plant Forecast input
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3.2 Measurement systems

3.2.1 Connection-point Meters

The interface between a power plant and the electricity system, the so-called connection-
point, is typically metered to a high degree of precision as the data is used in electricity market
settlement and as a live feed to plant and system operators. The minimum precision of such
measurements is usually dictated by network codes and/or market rules in a given region.
For example, international standard IEC 62053-21 and IEC 62053-23 describe classes of
active and reactive power meters, respectively. These standards are references in the Great
Britain Balancing and Settlement Code, where active power meter errors are required to be
less than 1.5% under normal conditions, or 2.5% if the power factor is beyond 0.5 lag or
0.8 lead, or active power is below 20% or rated import/export. It should be noted that these
measurements may not match those recorded by plant plant SCADA systems (the topic of
the next section) due to differences in equipment or location of measurement devices relative
to other balance of plant equipment.

Live power data is often streamed to plant and system operators and made available to
control room engineers and their support systems. It is often visualised along side forecasts
to track out-turn relative to forecasts continuously. Live data is also a key input to very short-
term forecasting systems with high temporal granularity, which is discussed in Section 3.4.2.

Energy is typically metered according to the duration of market settlement periods, which
typically range from 5 to 60 minutes. As the volume of energy used in market settlement,
predicting the volume of energy measured by these meters is the objective of the majority of
forecasting systems, especially those used by market participants.

3.2.2 Wind Power SCADA Systems

Wind turbines routinely measure operational variables for their control and operation. Several
of these are valuable in forecasting, particularly on the very short-term horizons if provided
in (close to) real-time to forecasting systems. These are listed in Table ?? and include
variables for measuring both power production and plant availability. It is important to note
the particular characteristics of these, in particular of the nacelle mounted anemometer and
wind vane, which are impacted by the up-wind rotor, see Section 2.1.2 for more details.
The sampling frequency if also significant. Typically 10-minute mean values are stored and
communicated to control control centres, but higher resolution may be of value, particularly
if maximising forecast accuracy on lead-times of 10-minutes or less is a high priority. Live
feed of instantaneous active power can be valuable in very short-term forecasting, though it
is important to treat both instantaneous power and power averaged over different time periods
as distinct.

Plant availability is an important factor in forecast production and evaluation. This
includes unavailability due to fault or maintenance outage, either of wind turbines or balance
of plant equipment, as well as control actions that reduce availability, notably high speed
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shut down and icing. Live availability alone is useful in forecasting but future changes in
availability are also important. Signals indicating future availability are therefore valuable
and should be made available to forecast systems.

Finally, data quality is very important. These variables can be a source of error in forecast
production if they are not of high enough quality or availability.

(i) Live active power measurements are a key input to very short-term forecasting
systems and status variables provide important information regarding plant availability.

(ii) Active power set-point is the maximum power the wind farm controller will allow to
be produced, e.g. if instructed to limit output by the system operator.

(iii) Current outages and ‘effective capacity’ are not necessarily a predictor of continued
outage/effective capacity, but it is an important input on very short-time scales and
when diagnosing errors in longer-term forecasts. These are:

• Turbine reduced capacity

• Turbine outage

• Strings of turbines out of service

• Voltage and breaker status at connection point

(iv) Nacelle wind speed and direction measurement can indicate the operating regime
of the turbine, and be used to verify whether it is operating a full or reduced capacity.

(v) Power available signals accurately estimate the amount of power that could be pro-
duced in the absence of control actions, such as reduced set-points.

(vi) Turbine yaw angle indicates the direction that the turbine is facing, and can be used
to verify normal operation, e.g. by comparing to the necelle measured wind direction.

3.2.3 Solar Power SCADA Systems

Solar power plants routinely measure operational variables for their control and operation.
Several of these are valuable in forecasting, particularly on the very short-term horizons
if provided in (close to) real-time to forecasting systems. These are listed in Table ??

and include variables for measuring both power production and plant availability. The
sampling frequency is also significant. Typically 10-minute mean values are stored and
communicated to control control centres, but higher resolution may be of value, particularly
if maximising forecast accuracy on lead-times of 10-minutes or less is a high priority. Live
feed of instantaneous active power can be valuable in very short-term forecasting, though it
is important to treat both instantaneous power and power averaged over different time periods
as distinct.
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(i) Live active power measurements are a key input to very short-term forecasting
systems and status variables provide important information regarding plant availability.

(ii) Current outages are not necessarily a predictor of continued outage, but it is an
important input on very short-time scales and when diagnosing errors in longer-term
forecasts. These may be recorded using SCADA flags as outages of:

• Inverters

• String(s) of panels

• Specific outages at lower levels

• Voltage and breaker status at connection point

(iii) Irradiance measurements allow the efficiency of the plant to be determined by
comparing to output and can be used in forecast model tuning.

(iv) Back panel temperature effect panel efficiency and can be used in forecasting systems
directly, and in combination with other variables to determine plant efficiency.

(v) Panel tilt if measured, can also be useful since trackers may be miscalibrated or faulty,
and this data can be used to aid in cleaning of training data and identifying issues with
live forecasts

Meteorology station temperature and wind speed, which has bee described in detail in
section 2, ?? can be combined with irradiance measurements to provide

Finally, data quality is very important. These variables can be a source of error in forecast
production, if they are not of high enough quality or availability.

3.3 Power available signals

Power Available (PA) signals provide an estimate of the potential power that could be
produced by a wind or solar plant if not constrained in any way. Constraints are typically
enacted by controller set-points issued by the plant or electricity system operator. PA is
equal to active power under normal operation, or the power that could be produced if any
constraints were lifted. Modern wind and solar plants typically produce PA signals internally
for control purposes and can be made available as SCADA data feeds. In some jurisdictions
these are shared with electricity system operators are are subject to accuracy requirements.

Wind and solar power forecasts are typically configured to forecast the power that would
be produced in the absence of constraints, which therefore corresponds to PA signals when
such actions are in place. Furthermore, forecasts that use live power as an input should switch
to taking PA as an input during constraints, or at least flag power data as corrupt during these
periods.
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3.3.1 Embedded Wind and Solar “behind the meter”

Embedded wind and solar, which is connected ‘behind the meter’ is in many electricity
systems handled as negative demand. This poses a challenge as both the installed capacity,
location, and power output of these generators may be unknown.

Various actors require forecasts of net-load with gross load and embedded generation
disaggregated. In this case, a combination of net-load metering, meteorological observations,
and wind and solar production data all add value to forecasting systems.

Key variables that should be made available to forecasting systems are:

(i) Installed capacity of embedded wind and solar generation. National and commercial
databases are available but levels of accuracy and detail are variable.

(ii) Metered production of embedded wind and solar generation, most likely a sub-set of
total installations deemed to be representative of the total in a given region.

(iii) Geographically distributed meteorological observations measuring wind speed and
direction, solar irradiance, and temperature, as a minimum.

3.4 Live power data in forecasting

Live measurements of the quantity of being forecast are the most important inputs to any
forecasting system on very short lead-times. Their recency and locality cannot be matched
by modelling due to latency and epistemic uncertainty introduced by modelling, except in
the case where live measurements are corrupted. In general, methods based on live data
outperform NWP-based forecasts for lead-times shorter than 2–10 hours, depending on the
specific target variable and reference NWP. State-of-the-art forecasting systems combine both
approaches for optimal performance at all lead-times, and may also include live data from
multiple neighbouring measurement locations for added benefit.

In addition to live measurements of the forecast variable, operational data such as plant
availability (e.g. proportion of turbines/panels in service) and control actions (e.g. curtail-
ments) are also required as they change the nature of the power measurement. State-of-the-art
forecasting systems will adapt to changing operational regimes and must be calibrated to pre-
dict the variable of interest to the user: what the actual power production is expected to be
in the future, or, the the power production would be expected to be in the future if no control
actions were in effect. Forecasting systems must also be robust to missing data and able to
either adapt to the loss of a live feed, or impute missing values.

3.4.1 Specifics for producers of forecasts

It is best practice for those who produce forecasts for internal use or to supply to incorporate
live data into their forecasting system for both continuous forecast verification (see [2]
part 3) and production of very short-term forecasts. As discussed above, live data is a
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valuable input to very short-term forecasting systems, and depending on the nature of forecast
produce/service, may be necessary for post-processing to account for plant availability. Live
data may also be included in forecast visualisation so that users may see recent history in the
same figure as a forecast.

3.4.2 Specifics for consumers/users of forecasts

Consumers/users of forecasts should be aware of whether their forecast provider is using live
data when producing forecasts, especially for very short-term lead-times. Some of the benefit
of including live data may be realised by rudimentary methods, such as blending live data
with forecasts or simply visualising recent observations alongside forecasts. However, to
maximise forecast performance, it is recommended to employ a forecasting system/provider
that leverages live data.

3.5 Summary of best practices

In summary, the following are recommended practices for use of power measurements in
real-time operation and forecasting of wind and solar power:

1. Live/real-time power measurements should be used in very short-term wind and solar
power forecasting, i.e. for lead-times from minutes to hours ahead.

2. Power data should be recorded at the same or higher temporal resolution and frequency
than that for the forecasting system.

• For electricity system operation temporal resolution may be one minute or less,
for trading operations this should match the duration of the shortest traded product
or settlement period.

• Forecast update frequency should match the highest frequency with which new
information becomes available, within the constraints of IT infrastructure.

3. The power measurement should be taken from the metering point that is most relevant
to the forecast user, this will usually be the metering system at the connection point to
the electricity network.

4. Live data on plant operating conditions (e.g. control actions the effect maximum out-
put) and availability (e.g. maintenance outages) should be used in forecast production
and evaluation. Where direct data is not available, this should be inferred using indirect
measurements.

5. Data on future plant availability (e.g. maintenance actions) should be used in forecast
production. Typically, power forecasts do not include the effect of control actions
issued by electricity system operators.
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6. Live Power Available signals should be used in forecast production in place of live
power production data during periods when output is curtailed due to control actions
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Measurement Setup and Calibration

Key Points

• Instrumentation Selection

1. Evaluation of the required data accuracy or uncertainty levels

2. Cost-benefit analysis of instrumentation regarding quality and mainte-

nance requirements

3. Specification on redundancy levels

• Representativeness of Measurements

• Verification of correctness of installation and calibration

• Setup and Calibration Logging

• Maintenance Schedules of instrumentation

4.1 Selection of instrumentation

In this section we will describe best practice for the selection of instrumentation for forecasting
applications of wind and solar projects. We focus in this description not on instruments,
but rather on the requirements and necessary considerations for the selection of instrument
classes that are appropriate for the pre-defined requirements.

The first step in the selection procedure is the definition of requirements for the forecasting
application. The following priority regarding the selection process of instrumentation is
recommended for both wind and solar forecasting applications [56]:

1. Accuracy requirements:

41



42 Chapter 4. Measurement Setup and Calibration

Accuracy requirements need to be defined for the application/project and aligned with
the associated levels of effort necessary to operate and maintain the measurement
system on under these constraints. An overall cost-performance determination should
be carried out to adapt the budget to the accuracy requirements and vice versa.

2. Reliability requirements:
Reliability can be achieved with redundant instrumentation and/or high quality instru-
mentation. Redundancy enhances and ensures confidence in data quality. Selection of
multiple instruments need to be aligned with the accuracy needs.

Table 6.1 additionally provides typical forecasting applications and respective appropriate
requirement classes or standards.

Table 4.1: Forecast applications and respective recommended requirements for appropriate instrumentation.

Forecast Application Requirements for Wind

according to IEC 61400
Part 12-1 [15]

Requirements for Solar

according to ISO9060:
2018, EC 61724-1:2021
and WMO Guide No.8

System Operation
Forecasting

Class A Class A or B

Utility Scale Forecasting Class A Class A or B
Wind/Solar Park control Class A Class A
Park / Turbine
Monitoring

Class S Class B or C

Electricity Market
Trading

Class B Class B

The above classification in Table 6.1 is only a categorisation of a best practice, and is
at best a rouch guideline as requirement in forecasting applications to ensure high quality
measurements to establish the potential for improved forecasting. For those applications,
where there are provided 2 classes, the second, lower class should be understood as minimum
requirement and the higher class as a requirement, if high quality is required and the respective
budges justifiable.

The classes for wind projects are in detail defined in the IEC 61400 Part 12-1 [15] and
explained in Annex D of the standard. The classes for solar or PV systems are defined in the
ISO 9060:2018 [32], the WMO Guideline No.8 [66] and the IEC 61724-1:2021 [16], where
differences, consistency and overlapping areas are explained in detail by the IEA Task 16
PVPS in their “Best Practices Handbook for the Collection and Use of Solar Resource Data
for Solar Energy Applications” (PVPS-Handbook) [56] and a few more detailed differences
for specific forecasting project types in section 4.1.2.
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4.1.1 Selection of instrumentation for wind projects

The selection of instrumentation of meteorological measurements for forecasting applica-
tions of operational wind farms should be selected to ensure (1) an independent source of
measurement to the power generation and (2) a good fit to the power generation of the wind
farm or solar plant.

In other words, there is a need for appropriate measurement equipment in the sense of:

1. Accuracy

• appropriate quality of instrumentation
• uncertainty evaluation of instrumentation

2. Reliability

• correct installation of instrumentation
• correct calibration of instrumentation
• if needed, redundant setup of instrumentation and logging

3. Availability

• if needed, redundant instruments
• loggers and instruments being fail safe

4. Weather resistance and safety

• meet local requirements of climate
• meet local requirements of landscape
• meet safety requirements (e.g. flight safe in case of met masts at hub height)

This list provides a general guidance of the five most important aspects that need consid-
eration in the selection process of instrumentation for real-time forecasting applications.

It is important for any authority (e.g. TSO, DSO, utility or balance responsible party),
assessment party or advisor to go through these aspects, when setting requirements for the
instrumentation. Dependent on these aspects, there are standards available that guide the
power plant operators to the instrumentation that is appropriate for the requirements set out
for the purpose and the siting of the instrumentation.

In this recommended practice guideline, we therefore focus on the procedure and instru-
ment classes rather than the individual instrumentation, as these are handled by available
standards (see section 1.6 for a description of the applicable standards).

For wind measurements, there is a principle of three tiers of instrument standard class
available that are dependent on the requirements to accuracy and reliability and are also
associated with different cost levels. It is therefore recommended defining the requirements
first, before requiring a specific instrumentation quality standard.

The “GUIDE TO INSTRUMENTS AND METHODS OF OBSERVATION - VOLUME
I”[66] defines important requirements for meteorological instruments to:

1. Simplicity of design which is consistent with requirements
2. Durability
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3. Convenience of operation, calibration and maintenance
4. Acceptable cost of instrument, consumables and spare parts
5. Safe for staff and the environment

It is recommended that authorities refer to the classification of instruments in their
requirements or provide accuracy limits.

The IEC 61400 standard [14], for example, provides information on anemometers accord-
ing to class A, class B or class S types, where the classes of instrumentation are dependent on
the terrain structure defined in Annex B of the standard. In areas with complex terrain, the
class B standard requires e.g. specific setup of instrumentation to accommodate the influence
of turbulence from varying terrain etc.

Table 4.2: Instrument classes for various environments.

Environment type Environment description Instrument class

Standard terrain Flat terrain with few obstacles class A
Complex terrain varying heights and many obstacles class B
Offshore wave and current driven turbulence
salty air classe S

The class S is associated with specific requirements, “where the influence parameter
ranges are restricted to allow for the specified accuracy of the anemometer.” [14]. Manu-
facturers of wind instrumentation that sell instruments for wind projects provide information
about the class of instrumentation to make it easy for wind farm owners to purchase the
appropriate instruments.

Table 6.2 describes the main and applicable types of instrument classes in their respective
environments.

4.1.1.1 Components of a Wind measurement system

4.1.2 Selection of instrumentation for solar power plants

In the IEA PVPS handbook for the collection and use of solar resource data [56] the authors
present recommendations for the selection of the instruments. These recommendations
also apply for the real-time applications. Depending on the solar technology used different
radiation components must be measured. The requirements for fixed monofacial PV or
thermal collectors, bifacial PV, concentrating systems and tracked non-concentrating PV are
different. Besides radiometers also further meteorological parameters must be measured as
stated above. For selecting the instrumentation, the user must also evaluate the required
data accuracy and consider the effort necessary to operate and maintain the measurement
system. Specifically, the most accurate instrumentation should not be purchased, if the
project resources cannot support the maintenance required to ensure measurement quality
consistent with the radiometer design specifications and manufacturer recommendations. In
other words, the accuracy of instruments needs to be considered under the aspect of it’s
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purpose of measuring and the expectation on the accuracy of the measured quantity. For
example, if the accuracy of an instrument is ∓0.3 and the target is an accuracy of 0.1, neither
the instrument nor the measured quantity can provide a representative picture.

Various radiometers of the same type should be considered for big power plants and are
also helpful to ensure a higher data quality. The number of required instruments for PV parks
of different peak power is given in IEC 61724-1 along to further requirements on instrument
accuracy, maintenance and data logging. Multiple radiometers within a project location
and/or providing for the measurement of all three solar irradiance components (GHI, DHI,
and DNI) can greatly enhance opportunities for post-measurement data quality assessment.

To summarise, the following considerations should be taken in the selection process:

(a) Evaluation of the required parameters, data accuracy or uncertainty levels

(b) Cost-benefit analysis of instrumentation regarding quality and maintenance require-
ments

(c) Specification of number of instruments

For the selection of pyranometers, the ISO 9060 standard "Solar energy - Specification and
classification of instruments for measuring hemispherical solar and direct solar radiation"[32]
separates since 2018 between 3 main classes of pyranometers A, B and C and four classes of
pyrheliometers (AA, A, B, C).

Furthermore, the characteristics “spectrally flat” and “fast response” were defined and
made up the largest change from the 1990 version of the standard to the newer 2018 version,
aligning it to the WMO Guide No.8 on Instruments and Methods of Observation [66] and
from IEC 61724-1[16]; here, the performance verification for temperature dependence and
directional response must now be included with every individual instrument of the highest
accuracy class A. In general they were added to the class to further specify the instrument’s
characteristics.

It should also be noted that the IEC 61724-1 PV system performance monitoring standard
requires compliance with the latest ISO 9060:2018 version[32], so that requirements for the
highest accuracy, Class A PV monitoring systems, also changed.

The purpose of the WMO Guide No. 8 and IEC 61724-1 standard, specifying Spectrally
Flat instruments is to ensure “.. continuity of performance”[66, 16]. In that sense, the
newer ISO 9060:2018 specifies since 2018 the spectral error by using a clear sky spectrum
and horizontally installed instruments, where the Spectrally Flat category is defined for
instruments installed non-horizontal, potentially measuring a different spectrum, using the
more stricter WMO Guide, IEC and ISO definition of the so-called spectral selectivity.

These standards state the use of Spectrally Flat instruments for:

(a) reflected solar radiation

(b) albedo
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(c) plane of Array (including reflected) irradiance

(d) diffuse irradiance (diffusometers)

Details and more practical explanations on the interception and interplay for the selection
of instrumentation according to the three standards WMO Guide No. 8 [66], IEC 61724-
1:2021[16] and ISO 9060:2018 [32] can be found in the NREL Handbook for PV [56] or
with instrument manufacturer and service providers (e.g./ [7, 25].

The following Table ?? only provides a very brief summary of the applicability of those
classes that are considered relevant for solar energy forecasting.

Table 4.3: Pyranometer classes for various requirements.

Requirements Instrument class Instrument de-

scription

Meteorological or Energy fore-
casting/ modelling for utility
scale PV systems

Class A Spectrally Flat (ISO9060:
2018)
Class A (IEC 61724-1:2021
Class 1 (WMO Guide No.8)

Scientific qual-
ity and highest
accuracy

Measurements for high level
monitoring for large commercial
scale PV systems

Class B (ISO9060:2018)
Class B (IEC 61724-1:2021)
Class 2-3 (WMO Guide No.8)

Good quality

Economic solutions for routine
measurements and small PV sys-
tems

Class C (ISO9060: 2018)
Class C (IEC 61724-1:2021
Class 4-5 (WMO Guide No.8)

Medium quality

For anyone changing requirements from the 1990-standard with the classes Secondary
Standard (now Class A), First Class (class B) and Second Class (class C), the most sensible
way is to let stakeholders contact the manufacturers or service providers to find out about the
costs for upgrading instruments to the new standard. Especially for pyranometers, the newer
2018 ISO 9060 standard defines for each class the required instrument heating, azimuth and
tilt angle accuracy. It also defines cleaning and calibration intervals for pyranometers and
requirements for measurement of module- and air temperature, wind speed and direction,
soiling ratio, and (AC and DC) current and voltage [7].

For the selection of requirements for real-time forecasting purposes, it is crucial to identify
the needs regarding the quality of the instrumentation, as costs for the instrumentation, but
also for operation and maintenance are significantly different.

For example, compliance with IEC61724-1 Class A pyranometers with directional re-
sponse and temperature response test results is equivalent to ISO 9060 Spectrally Flat Class
A instruments. In some cases, older instruments from the ISO 9060:1990 standard’s [31]
highest quality “Secondary standard” (now Class A), may be updated, if a pyranometer lacks
the required test reports for the performance verification on temperature dependence and
directional response (e.g. [7]).
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4.1.3 Measurement Characteristics of Different Technologies

4.1.3.1 Measurement Characteristics of Lidars

Measuring Laminar Low Level Jets

An advantage of the remote sensing device’s ability to measure the wind profile is it’s
ability to “measure” low level jets [35] that can have significant influence for the power
production forecasting. The low level jets are a meteorological phenomenon that is a well-
known and extensively researched topic in meteorology since the 1950s (e.g. [9, 70]) and
has been a topic in wind energy research since forecasting started.

Recent progress with the help of wind profilers (SODAR, LiDAR) as well as comparisons
with a 120m mast has been made in the Lamar Low Level Jet Program, reported by Kelly et
al. [35] over a 1-year period.

4.1.3.2 Lightning effects on instrumentation

It is a know phenomena (e.g. [35]) that lightning can cause high frequency noise contami-
nation to instruments. This is applicable for:

• Remote Sensing instruments (LIDAR, SODAR, RADAR)

• sonic anemometers

In the case of LIDAR or SODAR lightning contaminates the signal processing with
echoes. Such echo reflections can make it impossible for the signal software to process
the signal correctly and hence the data cannot be used. In resource assessment of research
projects, such noise can be corrected and the data re-processed to provide valuable data. In
Real-time this is not possible.

In the case of sonic anemometers, high-frequency noise contamination disturbes the
sonic signals of wind velocity and temperature and usually makes the data unusable.

Maintenance and mitigation methods These examples shows that the maintenance and
upgrades of software to make use of fixes in the signal processing algorithms of the devices
are a key technical requirement for real-time use of the devices, or alternatively that the raw
data needs to be sent and the processing takes place where the data is used.

Therefore, we can conclude that the reliability of any measurement device in real-time
operation requires a maintenance schedule to be a technical requirement in order for it not
to deteriorate. If this is done, the remote sensing instruments as well as sonic anemometers
have proven to provide reliable time series of wind speeds and gusts in general conditions.

4.2 Location of Measurements

The WMO Report Nr. 55 [1] describes the site and instrumentation selection as a 6-tier
problem:

1. selection of a suitable site
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2. correct exposure of instruments
3. determination of the area of representativeness of measurements
4. description of the site and its facilities
5. homogeneity of the meteorological/climatological data*
6. access to information*

The last two tiers require international collaboration to ensure measured data can be com-
pared and the precision and accuracy of the measured data follows a common understanding
for the use in models and methods to improve or interpret model results. We will not deal
with these aspects in this document, but want to highlight these topics to anyone dealing with
measurements and that the meteorological community has solved these critical problems
by establishing international data networks to provide modellers, researchers, instrument
developers and end-users the possibility to progress and exchange information.

The fifth tier deals deals with the lack of international homogeneity on measuring stan-
dards that has been a problem in meteorology and can also be observed in the definition of
measurement requirements for real-time purposes if wind and solar projects on an interna-
tional scale (e.g. [64]). If data measuring standards are not international, it is difficult to
obtain homogeneity in data and thus models and methods, where such data are used.
The WMO Guide for Meteorological Measurements [66] (“WMO Guide 8”) contains in
it’s ANNEX 1.D. SITING CLASSIFICATIONS FOR SURFACE OBSERVING STATIONS ON

LAND information about siting of instrumentation to ensure representativeness. The guide
covers all meteorological instrumentation that are relevant for wind and solar projects and
operation. The WMO Guide 8 states that “..the environmental conditions of a site may
influence measurement results. These conditions must be carefully analysed, in addition to
assessing characteristics of the instrument itself, so as to avoid distorting the measurement
results and affecting their representativeness..” and recognises that “...there are sites that do
not respect the recommended exposure rules”.
Out of these conditions, the WMO has developed a classification with 5 classes to “help
determine the given sites representativeness on a small scale (impact of the surrounding
environment)” and help to better take their exposure rules into consideration. The classes are
however not clearly defined, but are deviations from a standard class with minimun impact
of the surrounding environment. For wind projects, the IEC 61400-12-1 standard classifies 2
classes, (1) simple terrain and (2) complex terrain (see next section 4.2.1), and recommends to
adjust any instrumentation requirements for sites that fall outside these well-defined classes.

In the following two sections, we will define and discuss specific requirements for wind
and solar projects, respectively. The most relevant and useful rules to consider and to apply
for the definition of requirements for both wind and solar projects can be summarised with
the following 5 rules:

1. The classification must takes place per instrument, not per site as a whole

2. The rating of each site should be reviewed periodically as environmental circumstances
can change over a period of time

3. An update of the site classes should be done at least every five years
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4. An uncertainty due to siting has to be added in the uncertainty budget of the measure-
ment

5. The primary objective of a classification should be to document the presence of
obstacles close to the measurement site

4.2.1 Location of representative Measurements specific for Wind Projects

The representativeness of instrumentation for a specific purpose are defined and explained
in the MEASNET guideline [41] “Evaluation of site-specific wind conditions ” section 6.4
and are valid for “conditions which will influence the installation, operation and maintenance
(O&M), loading, durability, performance and energy yield of wind turbines installed at a
site”. This guideline thereby provides “..a traceable basis concerning the conformity of the
design parameters with site-specific conditions according to IEC 61400-1 standard [15, 14]”
and can hence also be applied for operational real-time measurement campaigns for wind
power projects.
For operational purposes, the minimum requirements for representative measurements of a
wind project are defined in the guide through 2 factors:

1. height of the primary wind speed measurement level

2. representativeness radius of a measurement

The MEASNET guideline [41] recommends that these two most important factors for the
representativeness of measurements are defined by a “site-specific expert analysis”, but also
provides minimum requirements for the (1) height of measurement levels in order to reduce
the “uncertainty of the vertical extrapolation of the wind conditions”; and (2) the radius
around a mast or other instrument at which “the wind conditions measured at the position can
be extrapolated with tolerable uncertainty” and where “all wind turbines shall be located in
the representativeness radius of at least one measurement”. The guideline differentiates here
between two terrain classes [41]. The United States Environmental Protection Agency (EPA)
provides a Meteorological Monitoring Guidance for Regulatory modelling Applications [42]
add to these two types the coastal or offshore location:

• simple terrain class

flat terrain with no noticeable terrain elevation variations, where the wind conditions
are mainly influenced by homogeneous roughness conditions.

• complex terrain class

complex terrain with considerable orographic variation (relief), significant slopes and
non-homogeneous roughness conditions.

• Coastal and Offshore Locations

the unique meteorological conditions associated with offshore and local scale land-sea
breeze circulations necessitate special considerations; the latter especially, if the land
side is characterised by complex terrain
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This ensures the representativeness of measurements to capture the wind conditions
reaching the entire wind farm.

Table 4.4 provide these minimum requirements that can be assumed also valid for the
operational part of a wind farm, where the purpose is to measure the wind conditions reaching
the wind farm.

Table 4.4: Definition of measurement campaign requirements for different terrain classes according to MEAS-
NET “Evaluation of site-specific wind conditions ” [41].

Terrain type Minimum mea-

surement height

Representativeness radius of a measure-

ment (max. distance of any wind turbine to
the next mast)

Simple terrain 2/3 hub height 10 km
Complex terrain 2/3 hub height 2 km

4.2.2 Location of representative Measurements specific for Solar Projects

For solar power plants the location of the instruments is of importance for the representa-
tiveness of the measurements as the irradiance can vary within the solar park due to clouds
or shading. Soiling, albedo, wind speed and temperature can also vary strongly. For PV
plants recommendations on the number and position of the instruments can be found in IEC
61724-1 [16].

The most important rules can be summarised to:

• Distribution of sensors:

Sensors should be distributed over the whole area of the power plant and of course not
concentrated at a single site

• Location of the instruments:

The location should be selected as representative for the covered sections of the power
plant

• Radiometers:

– Avoid shading for radiometers mounted on the front side of the PV modules

– For rear side instruments and albedo measurements, the number of required
radiometers depends also on the variability of the ground

– For rear side sensors multiple sensors are recommended at different positions on
the module, as the illumination profile is not uniform

– Specific information on the installation of radiometric stations can be found in
[56]
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4.3 Maintenance and Inspection Schedules

Data quality is usually dependent on the care taken for routine and preventive maintenance.
While this can be a requirement in a real-time environment, it is difficult to control. The
alternative to setting maintenance reports on the requirement list, is to routinely quality check
the delivered data and set time limits for repair of instrumentation into the requirement list
with a recommendation to follow the manufacturers maintenance schedules.

In the section 5 “Assessment of Instrumentation Performance”, the assessment of the
data for the monitoring of the data quality provides recommendations that may make it
unneccessary to require reports on maintenance schedules. It can in many cases be more
straight forward to have a data quality measure in place.

Nevertheless, if such a maintenance and inspection schedule is part of the requirement
list, the “Meteorological Monitoring Guidance for Regulatory Modeling Applications” [42]
provides useful recommendation for all common meteorological parameters and their re-
spective routine and preventive maintenance schedules. For most modelling applications, a 6
monthly schedule or a schedule according to the manufacturers recommendation, whichever
is the shorter time period, is recommended.

The following list provides the most important components that such a protocols and
reports should contain. A station checklist may be developed which should include the
following components according to the monitoring guidance [42]:

• A List of safety and emergency equipment.

• List of items to be inspected following severe weather

• A checkoff to ensure there is adequate disk space for on-site storage of the raw data

• A checkoff to indicate that backup of data has been completed

• A checkoff to indicate that clocks have been checked and adjusted as necessary

• A checkoff for the cables and guy wires securing the equipment

• All routine and preventive maintenance activities should be recorded in the station log
and/or on the appropriate checklist

• The station log and checklist provide the necessary paper trail to support claims of
accuracy

In the following section maintenance requirements for specific instrumentation is being
described and discussed in case the data quality monitoring requirements should contain
maintenance schedule reporting.

4.3.1 Maintenance of Radiometers

The maintenance of the radiometers is often challenging. IEC 61724-1, ASTM G183 and
ISO TR9901 recommend maintenance and inspection tasks including

• cleaning
• levelling/tracking
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• ventilation
• desiccant
• general instrument status incl. cables
• and the quality control of the acquired data sets.

Also the intervals for the different tasks are given. With modern radiometers, and profes-
sional installation of the instruments, the task that has to be performed most frequently at the
station itself is the cleaning of the sensors. The recommendations for cleaning are between
daily (ISO), daily inspection and at least weekly cleaning (ASTM) and weekly cleaning
(IEC). In fact the required maintenance frequency depends on the site, the instruments and
the accuracy requirement as discussed in [56]. The quality control of the data must also
be performed frequently as discussed above. Further information o the maintenance and
inspection of solar measurement stations can be found in [56].
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Assessment of Instrumentation Perfor-

mance

Key Points

• High measurement data quality requires continuous maintenance

• In real-time environments, insufficient data quality cannot be compensated for

• Uncertainty in measurements need to be taken into account as:

(a) uncertainty from the calibration (and possibly installation) as part of
standing data

(b) uncertainty from known issues in the operation of instrumentation as part
of the data delivery in real-time operation

• Quality assurance (QA) and quality control (QC) require a quality assurance
project plan (QAPP), which is the management and documentation of QC and
QA procedures and should include:

(a) Project Description and organisation

(b) QA procedures and monitoring

(c) Design of QC procedures

The quality of measured data that is supposed to be used in real-time applications is of
immense importance. Modern technologies to assimilate measured data into forecasting
models and processes usually have automatic algorithms that blacklist data that is out of
range or in other ways suspicious, because bad data is often worse for the forecast model than
no data.

53
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While low quality data can be compensated with longer collection periods or in general
longer time-series for non real-time applications such as plant assessment and configuration,
resource assessment, etc,̇ this is not possible in real-time environments, where the data has
to be quality checked at the time of retrieval and processed or dismissed. Quality control
and clear assessment criteria are therefore important tools for the success of the application
using real-time measurements. In this chapter, we will describe challenges and mitigation
strategies for the measurement data processing and quality control.

5.1 Measurement Data Processing

Measurement data processing is a non-trivial task due to the expectation that measurements
are to show the real conditions of the measurand. This may be so in laboratory experiments,
but is seldom the case in atmospheric monitoring. The uncertainty in the correctness of
measurements are due to two aspects:

1. instrument uncertainty:

• incorrect calibration

• failures/errors in signal processing (e.g. inexact values of constants and other
parameters obtained from external sources*)

• finite instrument resolution or discrimination threshold*

• inexact values of measurement standards and reference materials*

• approximations and assumptions incorporated in the measurement method and
procedure* j) variations in repeated observations of the measurand under appar-
ently identical conditions.

• incorrect mounting

• yaw misalignment

• limitation of line-of-sight

2. environmental uncertainty:

• obstacles

• interfering signals

• wake effects

*1 There are many more uncertainties in measurements of atmospheric monitoring (see
e.g. 3.3 Uncertainty in [6]). Nevertheless, the above list is sufficient evidence to point out
how important quality assurance and control as well as the knowledge of the uncertainty
coming with instrumentation is for real-time forecasting purposes. The following sections

1Items marked with a “*” are items also mentioned in [6].
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will describe a number of known issues in relation to wind and solar forecasting that are
relevant considerations for the end-users to understand possible quality issues in the received
data, and for stakeholders to acknowledge the importance to not underestimate the resources
that are required for high-quality data collection and processing in forecast models.

In the next two sections, some of the important aspects of uncertainty expression in
measurments and known issues for measurements associated with real-time forecasting for
wind and solar projects will be discussed.

5.2 Uncertainty expression in measurements

The “Guide to the expression of uncertainty in measurement” describes the result of a mea-

surement only as an approximation or estimate of the value of the measurand and thus is

complete only when accompanied by a statement of the uncertainty of that estimate [6].
In section 4.1 and 4.3 it was described that requesting uncertainty measures from instrumen-
tation in real-time is complex. A first step to integrate a solution, although often too limited,
is to provide a standing data value as a percentage that is determined at the setup/calibration
of the instrument and provided as part of the standing data. In that way, at least the instrument
specific uncertainty could be accounted for in the handling of measurements.

1. Formal requirement for uncertainty expression in measurements:
For a standardised technical requirement on uncertainty expression in measurements,
the JCGM guides [20, 59, 6, 60, 61] offer a valuable general source, also applied in
meteorology and oceanography. In that way, a harmonisation of "best practices" with
these directly related real-time disciplines can be achieved. In fact, the guides do not
only consider the measurand as a physical quantity, but also provide guidance to the
conceptual design and the theoretical analysis of measurements and methods.
One way to carry out an uncertainty estimation is with the Monte-Carlo method de-
scribed in [60] (pp23-33).

2. Informal practical solution for uncertainty expression in measurements:
For wind measurements, a practical solution for the expression of uncertainty is to add
a mean uncertainty value to raw measurements, as applied by Pinson and Hagedorn
[51] in an experiment over Ireland and Denmark with wind measurements from stan-
dard met masts [Pinson and Hagedorn, 2012 p7].
For solar projects it is well known that maintenance and ambient conditions of the mea-
surement heavily influence the uncertainty (see section 7.2 Measurement Uncertainty
in the PVPS Handbook [56] for more details). These influences should be included in
the uncertainty estimates. Influences such as the solar position or ambient temperature
can be considered automatically. Other influences such as, e.g. the levelling or soiling
of instruments is more difficult to include in the uncertainty estimates, but may be
added to the standing data as described above or in [6].
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Whether the formal or informal way is chosen for the quantification of uncertainty in
measurements, it is recommended to take the uncertainty of the allowed instrumentation for
a real-time forecasting application into account in the following way:

(a) Standing data: uncertainty from the calibration (and possibly installation) should be
part of the standing data of the instrumentation. In that way, forecasters can take this
uncertainty into account in there quality control and data screening.

(b) Data Provision Flag: uncertainty from known issues in the operation of instrumen-
tation should be flagged as part of the data provision in real-time operation, if the
instruments provide such a flag. Most atmospheric instruments complying to e.gċlass
A and B (IEC 61400[14], PVPS Handbook[56]) provide such flags and only require
the IT solution to allow for an additional value.

5.3 Known issues of uncertainty in wind and solar specific in-

strumentation

This section provides a few known issues associated with the specific use of of instrumentation
at the nacelle of wind turbines.

5.3.1 Effects of uncertainty in nacelle wind speed measurements and mitiga-

tion methods

From a theoretical perspective, it can be expected that wake effects from the rotating blades
are strongest at high speeds and low speeds that affect the mean wind flow, but not so much the
correlation in the "normal" operating range. When plotting nacelle anemometer measured
data in a scatter plot, where the linear relationship is strong in the range 3-12m/s and along
the linear part of the power curve, this becomes most apparent. Below cut-in and above the
wind speed where the power curve gets flat, the linear relationship does not hold any more.
It has also been shown with frequency distributions that met mast anemometers produce an
approximate Weibull distribution, where nacelle mounted instruments often produce strong
biases at the lower wind speeds affected by wake effects.

This is due to 2 effect:

1. wake effects from rotating blades

2. Yaw misalignment of wind turbine

In order to make use of nacelle mounted instrumentation, corrections are necessary. The
problems associated with these known issues are described in the following, together with
possible correction methodologies.
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5.3.1.1 Wake effects from rotating blades

Drechsel et al. [2012] found out that the wake effects of nacelle measured wind speeds are
highest up until the cut-in wind speed and above approximately 10m/s, where the power
curve starts getting flat. Allik et al. [2014] found out in a study with nacelle mounted cup
anemometers, nacelle mounted sonic anemometers and a reference met mast that the mean of
the three measurements did not coincide very well. The nacelle wind speed measurements,
due to the wake effects of the blades, have a much lower mean. The correlations however
were strong between cup anemometer and met mast anemometer and even stronger between
sonic anemometer and met mast readings within the range of 3-12m/s.

Jing et al. [34] also found that blade wakes affect the measurement of nacelle anemometer
and result in the inconsistency between nacelle wind speed (NWS) and free stream wind
speed, which seriously affects the power forecasting and performance evaluation of wind
turbine. They propose a practical way of overcoming such wake effects by developing a site
calibration model with a NWP model or CFD model and an independent measurement from
a met mast or scanning lidar to have a model calibrated for free wind-stream. This model can
then be used to correct for the wake effects. In their data-driven calibration method, reported
in [34], a “Relevance Vector Machine” was used to establish a site calibration model between
a Lidar wind speed (LWS) and a numerical weather forecasted wind speed (NWS). Once the
model is calibrated, the calibrated LWS can be used to replace the free stream wind speed
and wake effects on nacelle anemometers.

5.3.1.2 Yaw misalignment of wind turbine for scanning lidars

Held et al. [26] reports that due to the limitation of line-of-sight measurements and the
limited number of focus positions of a scanning Lidar, assumptions are necessary to derive
useful inflow characteristics at the turbine nacelle. The horizontally homogeneous inflow
assumption is violated, if a wake impinges the field of view of one of the Lidar beams. In
such situations, the turbine yaw misalignment measurements show large biases which require
the detection and correction of these observations.

5.3.2 Application of nacelle wind speeds in Real-time NWP Data Assimilation

The only recorded project to date that carried out dedicated real-time studies with nacelle
wind speeds in a real-time forecasting environment so far is the US Department of Energy
funded Wind Forecasting Improvement Project (WFIP). The project had a demonstration
phase of 1-year and used 410 nacelle wind speeds for the data assimilation of NOAAs
models [Wilzcak, 2014, Marquis, 2014].

One of the main findings in the experiment was that the nacelle wind speeds were
contaminated too much by wake effects to be useful as individual measurements. Due to the
constraints in the data assimilation techniques, it was important to find a strategy that made
it possible to use the raw data from the cup anemometers. The research team of NOAA
found that the best way to handle the contaminated data was to average the individual turbine
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data per wind farm and then blacklist those measurements that were outside the range of 2
standard deviations from the mean of the wind farm. This is a reasonable constraint to ensure
that measurements contaminated by wake effects will not be passed into the assimilation
program.

Additionally, the measurements were averaged over the nearest model grid point in the
numerical weather prediction model. By doing this, it was possible to remove systematic
biases and make use of the direct outcome of the model at the grid points.

To summarise, the strategy to use all 411 nacelle measured wind speeds at 23 wind farms
has been:

• averaging wind speed measurements over each wind farm

• blacklisting measurements that were more than two times a STD from the mean

• interpolating and averaging at the nearest grid point of the NWP model

• BIAS correcting at the model grid points

The advantage of this approach is that wake effects are smoothed out through the averaging
within the wind farm and averaging at the NWP model grid points ensures that bias corrections
are brought forward to the model result, i.e. the wind power forecast. In this way, it could
be demonstrated that nacelle wind speeds can become useful signals seen from a general
forecasting perspective.
Pinson and Hagedorn [51] used a different path to reduce uncertainty of the 633 meteorolog-
ical stations with cup anemometers that they compared to model results. Their assumption
was made according to the recorded uncertainty of unbiased state of the art anemometer
uncertainty, which is a standard deviation of around 0.5m/s. It was shown that this was
a reasonable and valid assumption. However, it is not known how much this assumption
is dependent on the number of measurement units and their distribution. Therefore, such
assumptions must be considered with care.

5.3.3 Known uncertainty in Radiation Measurements

In the PVPS handbook [56], uncertainty is also recommended to be treated according to the
Guide to the Expression of Uncertainty in Measurements (GUM) [6], also reflected in the ISO
2008. Here, a detailed descrption of the “Estimation of Calibration and Field Measurement
Uncertainty” and mitigation methods are described, specific for solar applications.

The PVPS handbook describes and details the GUM procedure specific for solar appli-
cations in section 7.2.1 in six steps [56]:

1. Define the measurement equation for the calibration and/or measurement system
The refers to the mathematical description of the relation between sensor voltage as
well as any other independent variables and the desired output (calibration response
or engineering units for measurements)

2. Determine the sources of uncertainty
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(a) uncertainty from statistical calculations, specifications from manufacturers, and
previously published reports on radiometric data uncertainty or professional
experience

(b) uncertainty associated with SZA response, spectral response, nonlinearity, tem-
perature response, thermal loss, data logger accuracy, soiling, and calibration,
including the drift of the calibration constant(s)

3. Calculate the standard uncertainty, u
Calculate an u value for each variable in the measurement equation by using:

(a) Type A: statistical method

(b) Type B: uncertainty component from manufacturer specifications, calibration
results, and experimental or engineering experience

4. Compute the sensitivity coefficient, c
The coefficient weighs the various uncertainties of the variables in a measurement
equation and provides appropriate contributions of uncertainty of each input factor for
the irradiance value.

5. Calculate the combined standard uncertainty, u c.
This is the combined standard uncertainty using the propagation of errors formula and
quadrature (square root sum of squares) method. It is applicable to both Type A and
Type B sources of uncertainty.

6. Calculate the expanded uncertainty (U 95).
The expanded uncertainty is calculated by multiplying the combined standard uncer-
tainty by the coverage factor, typically by applying the Students t-analysis to determine
the appropriate value of k (typically 1.96 for 95% and 3 for 98% confidence, respec-
tively, for large data sets assuming a Gaussian distribution

These six steps are considered a cycle when quantifying the uncertainty of (ir-)raiation
measurments. Step 6 can in that way be for example used as an input to a calculations of the
performance ratio of solar conversion systems: to calculate the ratio of system output/solar
input, the expanded uncertainty in Step 6 is used as an input to evaluate the denominator
(solar input), and the cycle continues to ultimately quantify the expanded uncertainty of the
performance ratio. Further, these steps are applicable to the quantification of the uncertainty
in both calibration and field measurements (see section 7.2.1 [56]).

Figure 5.1 provides typical calibration uncertainty for pyrheliometers and pyranometers
and shall here provide a guideline and recommendation on how uncertainty of pyranometer
and pyrheliometer instruments may be provided in standing data or limited as accuracy
requirement.
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Figure 5.1: Calibration traceability and accumulation of measurement uncertainty for pyrheliometers and
pyranometers (coverage factor k = 2), ©PVPS Handbook, Figure 7-2 [56] by NREL

5.4 General data quality control and quality assurance (QCQA)

The following general data quality and assurance process recommendations are based on
the Meteorological Monitoring Guidance for Regulatory Modeling Applications [42] of the
Environmental Protection Agency’s (EPA) definition of QC, QA and QCQAPP. We have
translated these guidelines for use in real-time wind and solar forecasting with support from
meteorological and power measurements.

The underlying principle, in line with EPA’s Quality Assurance/Quality Control (QA/QC)
procedures, is to ensure that the data collected meet standards of reliability and accuracy.

- Quality Control (QC) is defined as those operational procedures that will be rou-
tinely followed during the normal operation of the monitoring system to ensure that a
measurement process is working properly. These procedures include periodic calibra-
tion of the instruments, site inspections, data screening,data validation, and preventive
maintenance. The QC procedures should produce quantitative documentation to sup-
port claims of accuracy.

- Quality Assurance (QA) is defined as those procedures that will be performed on a
more occasional basis to provide assurance that the measurement process is producing
data that meets the data quality objectives (DQO). These procedures include routine
evaluation of how the QC procedures are implemented (system audits) and assessments
of instrument performance (performance audits).
It is important that the person providing the QA be independent of the organisation
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responsible for the collection of the data and the maintenance of the measurement
systems. Ideally, there should not be any lines of intimidation available to the operators
which might be used to influence the QA report and actions.

- Quality Assurance Project Plan (QAPP) is the management and documentation of
QC and QA procedures and should include the following items (which are a subset of
the EPS guideline [42]), relevant for real-time wind and solar projects:

1. Project Description and organisation

- Description of Measurement Application and Usage in the Forecasting Pro-
cess

- Validity Support of Measurement Data by the end-user

- QA objective and documentation for validity claims

- Documentation of Calibration method (and frequency) requirements

- Documentation of Data flow - from samples to archived valid values

- Documentation of Data flow - from samples to archived valid values

- Development of a Validation and reporting method for Forecasting Process

2. QA procedures and monitoring

- Performance monitoring by end-user

- Reporting of data validation and verification by independent agent

- Procedures to implement QA objectives

- Management support for corrective action and reports

3. Design of QC procedures

- Analysis of time dependency of quality control

- Analysis of required data quality for forecasting process

- Analysis of sampling requirements

- Selection of data screening methods

- Selection of validation and verification methods

When followed, the QA task reduces to spot checks of performance and examination of
records thus providing the best data with the best documentation at the least cost Once the
QA and QAQPP are planned and setup, the quality control of measurements needs to be
designed in order to ensure that the data quality is sufficient to be used in the forecasting
process. The following sections therefore provide recommendations separated for wind and
solar forecasting purposes and on two different time horizons:

1. QC in real-time forecasting at the time of receipt
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2. QC in historic mode:
quality control of a specific time interval of data such as a day, a month or one or more
years for resource assessment, performance monitoring, model/forecast training/tuning
etc.

5.5 Historic Quality Control (QC)

There are different ways of establishing a quality control procedure and management. De-
pendent on the level of quality that should be achieved, there are practical solutions that the
forecasting party can take over or an independent consultant or alternatively the end-users
themselves. The decision on that is dependent on the purpose of the quality control, the
requirements to the quality of the measurements and transparency.

In the following principles that are also used or recommended QC processes from stan-
dards or guidelines in site assessment auditing, resource assessment and meteorological
monitoring have been translated for real-time applications.

The recommendation section 6 will distinguish some of these principles with respect
to the desire of conformity and relevance to the mentioned quality standards. Note that all
principles are selected to ensure the end-user and forecast provider using the meteorological
data in the forecasting process with high-quality data for real-time applications.

5.5.1 QC for Wind Forecasting Applications

In most cases the QC methodology should be designed for both long-term analysis of e.gȧ
year and shorter periods such as weekly, monthly or quarterly examination of observational
data signals. There are two targets for the validation and quality control:

1. To identify the amount of valid data submitted

2. To produce a comprehensive analysis which will provide the wind farm owner with a
description of the root of the detected error(s) in the signals.

3. To limit the time from when an issue with data signals starts until it is diagnosed and
solved

4. To avoid cross correlations between measurement from different sources to fill data
gaps

The last item is too much challenged by irregular distances of the generating unit’s
locations and would only produce justifiable results, when done over long verification periods,
which is often not desired in real-time applications.

The "ISO Guide to the Expression of Uncertainty in Measurements" [20, 6, 61] and
its 2 supplements [[59, 60] from the Joint Committee for Guides in Meteorology (JCGM)
distinguish between two types of measurement uncertainty that are to be accounted for in any
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standardised taken measurement. These guidelines are relevant also for QC of measurements
with the purpose of supporting real-time wind and solar forecasting:

1. systematic errors, which are also known as measurement bias, often associated with
offsets of the measured quantity

2. random errors, which are associated with the fact that 2 measurements of the same
quantity are seldom the same

In section 3.1.2 of the guide, [20, 60] it is stated that "the result of a measurement .. is
only an approximation or estimate .. of the value of the measurand and thus is complete
only when accompanied by a statement of the uncertainty ... of that estimate". Considering
this definition, all measurements should ideally have an uncertainty term associated with it.
This is impractical in real-time operations, where the value of the measurements lies in the
availability of the data at a given time. Therefore, it is unrealistic to request uncertainty
measures. However, it could be a standing data value that is determined at the setup of the
instrument and provided as part of the standing data. In that way, the instrument specific
uncertainty could be accounted for in the handling of measurements.

The alternative is to carry out an uncertainty estimation with e.g. the Monte-Carlo
method described in [60] pp23-33) or a mean uncertainty value must be added to raw mea-
surements, as applied by Pinson and Hagedorn in an experiment over Ireland and Denmark
with wind measurements from standard met masts [Pinson and Hagedorn, 2012 p7]. If a
more standardised technical requirement is desirable, the JCGM guides offer a valuable gen-
eral source, also applied in meteorology and oceanography. In that way, a harmonisation of
"best practices" with these directly related real-time disciplines can be achieved. In fact, the
guides do not only consider the measurand as a physical quantity, but also provide guidance
to the conceptual design and the theoretical analysis of measurements and methods.

In the introduction to the Guide [JCGM, 2009], it is stated that ..the principles of this
Guide are intended to be applicable to a broad spectrum of measurements, including those
required for:

• maintaining quality control and quality assurance in production

• complying with and enforcing laws and regulations

• calibrating standards and instruments and performing tests throughout a national mea-
surement system in order to achieve tractability to national standards

• developing, maintaining, and comparing international and national physical reference
standards, including reference materials

To summarise, the handling and integration of wind power into the electric grid is an equally
important step to harness the full potential of the energy resource in an efficient and environ-
mentally friendly way.
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This requires that measurements are trustworthy and maintained to a quality that allows for
their use in forecasting tools in order to produce high quality forecasts and thereby reduce
the need of reserves. These guides in combination with the IEC 61400-1 standard provide a
good foundation for any grid code technical requirement specifications.

5.5.1.1 Specific Control Procedures

In the following a few specific control procedures for the most common instrumentation are
provided.

1. Cup anemometer on a met mast:
The accuracy of a single value from a cup anemometer is not high without a 10min
time average. The purpose of the 10min averaging process is to eliminate the impact
of the turbulent motion, which is generated as a result of frictional forces from the
terrain on the air as well as the imbalance in the diurnal cycle and the temperature
difference between the air and the surface. From a 15 minute data delivery of a noise
contaminated signal, it is almost impossible to prove the correctness or falsify the data
signals, because some of the values are realistic and others are not.
In contrast to the nacelle measurements, a single cup anemometer on a mast can be
inspected at a much lower cost, today even with a drone. Several anemometers can
be mounted on the mast and it is at least possible to submit the data directly without
giving the wind farm software the possibility to delay, block or manipulate the data.

2. Cup anemometer on a wind turbine nacelle:

Previous studies [18, 64, 69, 57, 33] agree that the disturbances, whether it be flow
induction or wake induced, are of significant size for nacelle mounted measurement
units. While there has been progress over the years in applying precautionary mea-
sures to reduce the risk of measurement errors and thereby reduce the uncertainty
of the measurement signals, the physical aspects leading to the disturbances cannot
be resolved for units that are placed behind the rotor. Unfortunately, all studies that
looked at high wind speeds (> 15m/s) up to cut-off wind speeds concluded that the
relationship to the reference measurements from met masts were no longer linear and
deteriorated strongly. This also means that nacelle mounted measurement units are
unsuitable in the control room regarding ramping in high speed wind events as well
as pitch regulations due to curtailment or safety, because it is throughout these times,
where the measurements are most unreliable. At the time of writing, there are lim-
ited peer-reviewed studies that would provide any hint of these instruments providing
proven and consistent quality in a real-time operation.

3. Remote sensing devices:

Nacelle-mounted lidar systems offer the possibility of remotely sensing the inflow of
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wind turbines. Due to the limitation of line-of-sight measurements and the limited
number of focus positions, assumptions are necessary to derive useful inflow charac-
teristics.
Typically, horizontally homogeneous inflow is assumed which is well satisfied in flat,
homogeneous terrain and over sufficiently large time averages. However, it is violated
if a wake impinges the field of view of one of the beams. In such situations, the turbine
yaw misalignment measurements show large biases which require the detection and
correction of these observations.

Correction Example for complex flow [26] have developed a method to detect wakes
in the inflow of turbines using nacelle lidars and developed a correction method. Here,
a detection algorithm is proposed based on the spectral broadening of the Doppler spec-
trum due to turbulence within the probe volume. The small-scale turbulence generated
within wake flows will typically lead to a significantly larger broadening than in the
ambient flow. Thus, by comparing the spectral widths at several locations,situations,
where a wake is impinging the field of view of one or more beams can be identified.
The correction method is based on an empirical relationship between the difference in
turbulence levels at distinct beams and the difference in wind direction derived from
the lidar and the real wind direction. The performance of the algorithm is evaluated in
a field experiment identifying all wake situations, and thus, correcting the lidar derived
wind direction.

4. Blade-pressure computed nacelle wind:

A relatively new development is the nacelle wind speed computed with a method that
evaluates signals from blade pressure sensors. In one recent analysis in Ireland [47]
the data signals from the computed nacelle wind show a better fit of the met signals
to the power production compared to the data signals from met masts. Among the
nacelle sourced met signals, such signals often provide the most reliable sourced met
data. The better fit of these data has been found due to the calibration of the signals to
fit the wind turbine’s and/or wind farm’s power curve.
There are benefits and drawbacks with this method, which need to be examined before
permission is given and controlled regularly: The alignment with the power production
is probably the largest benefit, while costs are another. The drawback on the other hand
is that the signal is not independent of the wind turbines and is prone to failures under
cut-off or other outages of the turbine, where an independent measurement would
still provide a representative picture of the weather situation at hand. Special care
need to be taken for these cases, i.e. when the blades are pitched and do no longer
provide a representative wind measurement. Unless there is a calibrated (against flow
induction, wake effects and yaw misalignment) nacelle wind anemometer installed that
provides or corrects the signals, when the turbine blades are in some way pitched and
indicates with a flag which type of data is provided, it is not recommended using such
data for forecasting purposes with a time horizon of minutes or hours. Otherwise,
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or maybe in combination with a met mast at reduced (lower than hub height) height,
these measurements provide a cost-effective alternative to instruments mounted on met
masts or lidars, when hub height wind measurements are necessary.

5.5.1.2 Practical Methodology for quality control of measurement for wind

applications

A practical methodology to apply for the validation and quality control of meteorological
measurements is a combination of different consistency checks:

• Missing Values and time stamps

• Forecasted wind speed versus measured wind speed

• Forecasted temperature, wind direction against measured values

• Forecasted power versus active power checked with SCADA MW

• Computed active power from measured wind speed versus actual active power

• Comparison against previous years of the same wind farm

• Comparison to the average error level for wind farms in the same period

5.5.1.3 Statistical tests and metrics for the QC process

One practical solution to test measurement signal quality is to use verification methods
similar to the verification of forecast errors with the exception that a forecast or a forecast
range of the respective variable is used as the reference, because it is the measurement that
needs validation. The forecast has a known accuracy level, which is used to find changes in
quality in the measurement signals. By using e.g. ensemble forecasts, the uncertainty of the
measurement signals can also be quantified (see e.g. [43]).

By validating in different sub periods of the year, it can be shown whether the error
pattern has been temporary or on a long-term basis.

By using a variation of different statistical tests as recommended in part 3 of this rec-
ommended practice [2], the data basis is large enough to interpret the data accuracy. The
following set of statistical metrics are recommended:

1. BIAS:

The BIAS in itself should be low, but is no guarantee of correctness of the data, because
a BIAS can be low for the incorrect reason

2. MAE: MAE and BIAS together show, if the data has an offset.

3. RMSE: There are few extreme errors, if the ratio RMSE/MAE exceeds 1.3.

4. CORRELATION:

The correlation allows for easy detection of constant measurements as well as sign
errors.
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5. Frequency distribution:

The frequency distribution from e.gȧ one year data set of 15-min mean values of a
wind speed should be a smooth curve with decreasing probability of high wind speeds.
A temporary instrument fault will be visible as a skewness of the curve. Comparing
the frequency distributions of an ensemble mean forecast against measurements is
recommended in this case, as a mean smooths outliers in the data set.

Positive and negative phase errors between a forecast and measured data tend to cancel
each other out over a long enough period. Therefore, a high similarity between two
independent time series of the same physical variable can be expected.

The formulas of the test metrics can be found in the Appendix B.
A graphical analysis of measurement signals with these metrics can then also be used to
define acceptance limits for the meteorological variables that are to be delivered.

Figure 5.2: Example of a graphical analysis of met data signals for 4 variables to define acceptance limits. The

x-axis shows the percentual amount of wind farms ordered starting from lowest to highest error score (y-axis) .

Figure 5.2 and 5.3 show examples of results of a historic quality control procedure of data
signals in form of CORRELATION, MAE and BIAS for the following 4 variables:

(a) wind speed

(b) wind direction

(c) air temperature

(d) air pressure

Each metric is calculated for one wind farm. The ranking for the quality will always be
variable dependent. For example temperature varies slower than wind speed and achieves
therefore in general a higher correlation.
With such a graphical analysis it is possible to define acceptance limits for the quality of
the data in terms of BIAS, MAE and CORRELATION. This type of validation procedure
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(a) Historic MAE QC (b) Historic MAE QC

Figure 5.3: Example of a graphical analysis of met data signals for 4 variables to define acceptance limits. The
x-axis shows the percentual amount of wind farms ordered starting from lowest to highest error score (y-axis).

has been found [47] to allow for the examination of the wind farm met signal data in an
anonymous form suitable to keep overview of the data quality. The graphs directly show
the percentage of capacity that lacks quality. Usually, temporary outages show up as spikes
in data time series. Although forecasting systems have to have an ad-hoc quality control
and must contain a certain fault tolerance for blacklisting spiky data, some of the spikes are
weather related and may in certain waether situations no longer be distinguishable from data
that is realistic. Extreme errors often occur in individual months, after periods of higher
reliability and indicate a weather dependency [47].
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5.5.2 QC for solar applications

There are several sets of QC tests for historic radiation data (BSRN, SERI QC, QCRad,
MESOR, ENDORSE. The tests in the literature use different limits for individual irradiance
components (DHI, GHI, DNI) or parameters derived from these components together with
solar position and at times clear sky irradiance. Types of limits are

• physical possible limits

• rare limits

• extremely rare limits

The existing QC tests have been harmonized in the framework of IEA PVPS Task 16 for
stations with measurements of all three irradiance components (GHI, DHI, DNI) or two (GHI
and DHI or DNI) and are documented in chapter 3 in the section 3.4.2 Data Inspection of the
PVPS Handbook [56] in more detail.

The quality control consists of automatic tests and visual inspection by an expert. The
QC results in one flag per time stamp and test. The flag’s value is either "data seems ok",
"data point was detected as problematic" or "test could not be performed". The latter can
occur for a missing time stamp/data, or if the test domain was not met and the test could not
be applied.
The visual inspection of the data is of importance to detect bad data and manually assign the
flag. This also includes the control of the meta data (logbook with comments, calibration
information). Visual inspection can also help to determine. if the time stamps refer to the
end of the averaging interval (e.g. 1min, 10min or 1h averaging). The correct interpretation
of the timestamps is essential. The following tests are defined. All test results are visualized
and manual flagging can be used to improve the automatic test results. Some tests are not
automated, but purely visual inspections:

• Missing time stamps

• Missing values

• K-Tests2

• Baseline Surface Radiation Network (BSRN) QC

– three component test (if DNI, DHI and GHI are measured, one can calculate GHI
from DHI and DNI and the solar elevation angle and compare it to the measured
GHI)

– extremely rare limits test

– Physically possible limits (PPL) test

• Tracker off test (test that checks for high GHI and low DHI at DNI close to zero)
2The test compares three K values that are ratios of the global and direct irradiance components to the

extraterrestrial irradiance and the ratio of diffuse to global irradiance. The tests check if these values are within
certain common intervals (see details in chapter 3 “Measuring Solar Radiation” of the PVPS handbook[56]).
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• Visual inspection

The PVPS handbook [56] provides some information about “gap filling” methods in section
3.4.2.1 Data Quality Control and Assurance to fill out missing values or time stamps in time
series. While this is relevant for the generation of bankable data in resource assessment,
it is more important in real-time applications to ensure that data gaps are not counted into
the verification, where they can lead to misleading results, if they are e.g. filled with zeros
instead of a well defined flag in the databases, where the data is stored for historic evaluations.

For the visual inspection several plots are needed. Heat maps of the irradiance with axes
hour of the day (y) and day of year (x) are used. To check for radiometer shading heat maps
of the maximum irradiance that occurred in bins of Sun elevation and azimuth angle with
axes elevation (y) and azimuth (x) are commonly used. Objects can be seen in this plot as
patterns of low irradiance. The deviation of the DNI measurement from the DNI calculated
from GHI and DHI should also be inspected (e.g. as heat map or as a plot vs. time). The
AM/PM symmetry of the GHI data should be visualized. Calibration changes can be visible
in a plot of the clear-sky index (measured GHI/extraterrestrial GHI) vs. time.
To decide, if a data point can be used not only the result of a single flag per timestamp is
needed, but all flags for that timestamp and surrounding timestamps must be considered.
For the validation of satellite and model derived radiation data the following procedure is
recommended: A data point is usable, if

• all individual QC flags are indicating that the data is ok

• the test could not be performed and all measured radiation components are available

Data should be excluded, if

• 30% or more of the timestamps (daytime, solar elevation >0) from one day are flagged,
exclude the entire day

• Intervals between flagged data that are shorter than 60 min are also excluded

For the determination of the length of the interval only timestamps with elevation >0 are
considered. Less stringent exclusion rules could be applied for other purposes, such as the
determination of yearly sums.

5.6 Real-time Quality Control (QC)

The differences between real-time quality control and historic quality control (QC) is some-
what different. The major difference is that real-time QC is restricted to the data values in
real-time and hence the methods used need to relate to the historic validations, calibration
results and pre-defined accuracy limits and levels, but not all can be conducted and validated
in real-time.
For most general quality control of measurment data, there is no difference, whether the
measurements are targetted to wind or solar forecasting applications. For this reason, the
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first part of this section describes the recommended quality control procedures that apply for
both wind and solar forecasting applications.
A general description of errors in both wind and solar measurements can be summerised to
(see e.g. [36, 37]:

(1) data management errors:

(a) data transcription and collection

(a) errors that occurred during data manipulation (e.g. duplication of data sequences)

(a) standardization of practices (e.g. measurement units, reference times)

(2) measurement errors:

(a) temporal or spatial consistency in the data

(a) errors produced at the moment of sampling as a result of :

– instrumental malfunction

– calibration

– exposure problems

The data management errors can in many case be avoided or solved fast, if there is a
QCQA project plan (QCQAPP) as described for the historic QC in section 5.4 that contains
the neccessary documentation to source the errors.

5.6.1 Data screening in real-time Wind and Solar Forecast Applications

General rules for data sceening in real-time forecasting applications apply for both, wind and
solar. The most common data errors that a quality control system needs to catch are:

• repeated values

• values out of range limits (see 6)

• formatting of data file/decoding error

• consistency of time stamps/chronologically

• data sampling and time averaging definitions (see 5.6.2

• site coordinates

• instrumentation identification



72 Chapter 5. Assessment of Instrumentation Performance

5.6.2 Data Sampling Thresholds in real-time Wind and Solar Forecast Appli-

cations

Section 4.5 Sampling Rates of the EPA guidance on Meteorological Monitoring for Regula-

tory Modeling Applications deals with sampling of data signals and averaging of data. These
recommendations are to a large extend relaevant for the wind and solar real-time forcasting
applications in the energy industry, as the recommendations are directed to the data quality
required by numerical weather prediction models to add value. All wind and solar forecast-
ing processes above a few minutes forecast horizon are based on NWP models; hence, our
recommendation to follow these guidelines.
The following recommendations are adjusted for wind and solar forecasting applications;

1. Estimates of means should be based on at least 60 samples (one sample per minute for
an hourly mean )

2. Estimates of the variance (standard deviation to within 5 or 10%) should be based on
at least 360 samples (six samples per minute for an hourly variance).

3. To compute the mean wind direction:

• Single-pass processing wind direction sensor (wind vane): samling once per
second to insure that consecutive values do not differ by more than 180 degrees

• Multi point analog recorders: sampling at least once per minute

5.6.3 Real-time QC for Wind Applications

5.6.3.1 Data Screening

The recommended data screening criteria for wind and solar projects as a practical approach
to data quality control and management follow the EPA guideline [42] and are suggested
with some limits that are easy to control. Table 6.6 provides some useful and practical limits
that can be recommended for the data screening task.

Table 5.1: Practical data screening criteria for data quality control of wind projects

Variable Screening Criteria: Flag data if the value

Wind Speed - is less than zero or greater than 50 m/s
- does not vary by more than 0.1 m/s for 3 consecutive hours
- does not vary by more than 0.5 m/s for 12 consecutive hours

Wind Direction - is less than zero or greater than 360 degrees
- does not vary by more than 1 degree for more than 3 consecutive hours
- does not vary by more than 10 degrees for 18 consecutive hours



5.6. Real-time Quality Control (QC) 73

Variable Screening Criteria: Flag data if the value

Temperature - is greater than the local record high
- is less than the local record low (limit could be applied on a monthly basis)
- is greater than a 5◦C change from the previous hour
- does not vary by more than 0.5◦ for 12 consecutive hours

Temperature - is greater than 0.1◦C/m during the daytime
Difference - is less than -0.1◦CC/m during the night time

- is greater than 5.0◦C or less than -3.0◦C
Dew Point - is greater than the ambient temperature for the given time period
Temperature - is greater than a 5◦C change from the previous hour

- does not vary by more than 0.5◦C for 12 consecutive hours
- equals the ambient temperature for 12 consecutive hours

Pressure - is greater than 1060 mb (sea level)
- is less than 940 mb (sea level) (values should be adjusted for elevations other
than sea level)
- changes by more than 6 mb in three hours

Radiation - is greater than zero at night
- is greater than the maximum possible for the date and latitude

5.6.4 Real-time QC for Solar Forecasting Applications

For the real-time QC of solar radiation data, the QC methods for historic data can only be
partly applied. QC methods requiring visual inspection cannot be applied automatically.
Such methods can be used to analyse errors that are detected differently.

The following tests can also be applied in a real-time environment (more details are
provided in section 5.5.2):

• Missing time stamps

• Missing values

• K-Tests3

• Baseline Surface Radiation Netork (BSRN) QC

– three component test

– extremely rare limits test

– physically possible limits (PPL) test

QC results indicating that the result is suspicious such as the above described tests for
rare limits or some versions of the three component tests might lead to too many data gaps,

3The tests compares three K values that are ratios of the global and direct irradiance components to the
extraterrestrial irradiance and the ratio of diffuse to global irradiance. The tests check if these values are within
certain common intervals (see details in chapter 3 “Measuring Solar Radiation” of the PVPS handbook[56]).
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depending on the real-time application. If this is the case, these strict QCs should be adapted
with less strict limits or used only for the further analysis of the data once another QC test
was not passed.

Limits should always be defined based on the required data quality and data availability.
A site dependence of these limits should be considered. For different instrument options
different limits might be required, as e.g. cosine errors of pyranometers vary strongly between
different models. Currently no standardised QC for real-time radiation data exist.



Chapter 6

Best Practice Recommendations

The Application Areas for the Recommendations:

The following application areas and associated applications are covered in this rec-

ommended practice guideline:

(A) System Operation, Balancing and Trading

• Situational awareness in critical weather events

• High-Speed Shutdown events

• Grid related down-regulation or curtailments

• Short-term Forecasting with updates from measurements

• Intra-day Power plant balancing

(B) Wind Turbine, Wind Farm and Solar Plant Operation and Monitoring

• Wind turbine and Power Plant Control

• Condition Monitoring

The information behind the recommendations

The recommendation’s underlying information have been structured to account for a

decision making processes for the use of real-time meteorological and power mea-

surements for real-time wind and solar forecasting purposes in the following order:

• Description of relevant meteorological instrumentation (section 2)

• Description of relevant power measurements (section 3)

• Setup and Calibration of relevant instrumentation (section 4)

• Quality Assurance and Quality Control (section 5)

75
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Principles for the Recommendations of Accuracy and Reliability:

The recommendations for the selection of instrumentation in this section are based

on the following set of principles:

1. Accuracy requirements:

Accuracy requirements need to be defined for the application/project and

aligned with the associated levels of effort necessary to operate and maintain the

measurement system on under these constraints. An overall cost-performance

determination should therefore always be carried out to adapt the budget to the

accuracy requirements and vice versa.

2. Reliability requirements:

Reliability can be achieved with redundant instrumentation and/or high quality

instrumentation. Redundancy enhances and ensures confidence in data quality.

Selection of multiple instruments need to be aligned with the accuracy needs.

In the remainder of this chapter, the principles developed in these four previous sections
are brought to the application level. In other words, the somewhat theoretical considerations
from the previous chapters are now applied to real-world problems.

6.1 Definitions

This recommended practice guideline is targeted to the use of real-time meteorological
measurements for real-time forecasting applications for wind and solar projects. We define
real-time applications in the following way (see 1.4):

The aim of real-time applications is to have reliable information about the current weather
situation; gaps (missing data) are more critical as for these times, forecasts or plant control pa-
rameters cannot be generated or adapted with the help of measurements. Forecasts and other
control options with lower quality must then be used. Temporarily erroneous data is more
critical as the forecasts or plant control might lead to energetic and economic inefficiencies,
system security issues etc.

6.2 Instrumentation

In this recommended practice guideline, we have been investigating the usefulness and
challenges associated with the use of the following instrumentation for real-time forecasting
purposes:

1. Instrumentation for Wind projects (section 2.1)
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(a) Remote Sensing Instrumentation for wind farms (section 2.1.1, 6.4.1.2)

(b) Nacelle instrumentation and measurements (section 2.1.2, 5.3.1, 5.3.2)

(c) Cup anemometers (section 2.1.3)

(d) Sonic and ultra-sonic anemometers (section 2.1.4)

(e) Horizontally mounted nacelle LiDAR (section 2.1.5

2. Instrumentation for Solar Projects (2.2)

(a) Point Measurements (section 2.2.1)

(b) All sky imagers (section 2.2.2)

(c) Satellite Data (section 2.2.3)

3. Power Measurements for real-time operation (section 3)

(a) Live power and related measurements (section 3.4.1)

(b) Power available signals (section 3.3)

(c) Connection-point Meters (section 3.2.1)

(d) SCADA Systems (section 3.1, 3.2.3)

The purpose of describing these instrumentation types is to enable end-users to verify and
specify which order of selection to follow, (1) which resolution and/or accuracy ranges limit
the use of certain instrumentation for pre-defined applications, or (2) which instrumentation
can be applied for pre-defined criteria.

6.3 Recommendations for real-time measurements by Applica-

tion Type

The choice of instruments is recommended to be made according to a standardized clas-
sification when the choice of requirements has lead to the definition of quality criteria by
application type.

Table 6.1 provides a guideline to a best practice categorisation for the development of
requirements in real-time forecasting applications to ensure high-quality measurements. For
those applications, where there are two classes provided, the second, lower class should be
understood as minimum requirement and the higher class as a requirement, if high quality is
required and the respective budges justifiable.

The classes for wind projects are in detail defined in the IEC 61400 Part 12-1 [15] and
explained in Annex D of the standard. Any further detail to the quality of the instrumentation
should be referred to this standard. Some more detailed explanation can be found in section
??.

The classes for solar or PV systems are defined in the ISO 9060:2018 [32], the WMO
Guideline No.8 [66] and the IEC 61724-1:2021 [16], where differences, consistency and
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overlapping areas are explained in detail by the IEA Task 16 PVPS in their “Best Practices
Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications”
(PVPS-Handbook) [56] and a few more detailed differences for specific forecasting project
types in section 4.1.2.

Table 6.1: Forecast applications and respective recommended requirements for appropriate instrumentation.

Forecast Application Requirements for Wind

according to IEC 61400
Part 12-1 [15]

Requirements for Solar

according to ISO9060:
2018, EC 61724-1:2021
and WMO Guide No.8

System Operation
Forecasting

Class A Class A or B

Utility Scale Forecasting Class A Class A or B
Wind/Solar Park control Class A Class A
Park / Turbine
Monitoring

Class S Class B or C

Electricity Market
Trading

Class B Class B

Resolution and accuracy for the respective applications and parameters are provided by
the standard’s categories for the instrumentation. Manufacturers of such instrumentation
follow these classifications and provide a straight forward decision tool for requirements for
wind measurements and radiation measurements.

The drawback of this selection process is that other meteorological variables are not
covered under these standards and need to be defined according to the resolution and accuracy
method for the different applications in the following sections 6.4, 6.5, ?? and 6.6.

6.4 Recommendations for real-time Measurements for Power

Grid and Utility-scale Operation

6.4.1 Recommendations on Quality Requirements

The choice of instrumentation should always take into account the need for appropriate
measurement equipment in the sense of (see details in section 4.1):

(a) Accuracy and Resolution

(b) Reliability

(c) Availability

(d) Weather resistance and safety
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6.4.1.1 Requirements for Wind Forecasting Applications according to envi-

ronment

Table 6.2 describes the main and applicable types of instrument classes in their respective
environments (see section 2.1 for details:

Table 6.2: Instrument classes for various environments.

Environment type Environment description Instrument class

Standard terrain Flat terrain with few obstacles class A
Complex terrain varying heights and many obstacles class B
Offshore wave and current driven turbulence

salty air
class S

The class S is associated with specific requirements, “where the influence parameter
ranges are restricted to allow for the specified accuracy of the anemometer.” [14]. Manu-
facturers of wind instrumentation that sell instruments for wind projects provide information
about the class of instrumentation to make it easy for wind farm owners to purchase the
appropriate instruments.

6.4.1.2 Wind Measurement Alternatives to Met Masts

There are various alternatives to met masts for the collection of meteorological measurements,
such as lidars, sodars, radars, nacelle anemometer, nacelle lidars, sonic anemometer, etc
(see more details in section 2.1. However, most of these have either a high measurement
uncertainty due to e.g. weather conditions, obstacles, that limit these instrumentations to
the more non-critical, or non-real-time use. Some may simply not have been tested for the
purpose yet.
The two alternatives to met masts, that are most common, tested and recommended at present
for grid operation and utility-scale operation (see detailed information in section 2.1.1 and
2.1.2 and 5.5.1.1) are:

1. Remote Sensing Devices: Lidars
Lidars and Sodars can be an acceptable source of wind measurement in the real-
time power system or utility scale operation, if the requirements for delivery rate and
validity/uncertainty of the measured value can be kept within specific limits.

The recommended technical requirements for lidars is to ensure high-quality data in
long-term real-time operation and as alternatives to met mast measurements are:

• measurements must be raw or technical requirements must include maintenance
and software updates

• lightning protection and recovery strategy after lightning measurements should
be taken at a height appropriate for the wind farm, either at one of preferable at
both hub height and around 30m
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• instruments must be serviced and maintained by skilled staff
• version control must be maintained for signal processing
• wind characteristics data must be on wind turbine level
• Lidars and Sodars in complex terrain require special consideration

Details for these requirements can be found in section 2.1.1.

2. Blade-pressure computed wind speed at the nacelle (see also :
This method can be recommended for the use of real-time measurements for forecasting
purposes under the following conditions:

- the portfolio of wind farms contain a minimum of 30% well distributed wind
measurements from other independent instrumentation such as met masts or
from Lidars/Sodars

- a well calibrated transition from blade-pressure computations to anemometer
measurements at the nacelle in high-speed wind ranges, or down-regulation
situations (pitched blades) (see section 5.3.1)

- a combination of a met mast with instrumentation at lower levels, e.g. 10m, 20m
and 30m is used together with the blade-pressure method to ensure coverage over
the full wind range from 0-40m/s

If these measures are taken into consideration, the blade-pressure based wind obser-
vations provide a cost-effective alternative to instruments mounted on met masts or
lidars, when hub height wind measurements are a requirement. See more details about
this method in section 5.5.1.1.

6.4.1.3 Recommendations for Solar Forecasting Applications

the following considerations should be taken in the selection process:

(a) Evaluation of the required parameters, data accuracy or uncertainty levels

(b) Cost-benefit analysis of instrumentation regarding quality and maintenance require-
ments

(c) Specification of number of instruments

Table ?? provides a very brief summary of the applicability of those classes that are
considered relevant for solar energy forecasting at power grid level or utility-scale operation.
Details can be found in section 4.1.2.

For the selection of requirements for real-time forecasting purposes, it is crucial to identify
the needs regarding the quality of the instrumentations, as costs for the instrumentation, but
also for operation and maintenance are significantly different. Details and decision support
can be found in section 4.1.2.
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Table 6.3: Pyranometer classes for various requirements.

Requirements Instrument class Instrument

description

Meteorological or Energy
forecasting/ modelling for
utility scale PV systems

Class A Spectrally Flat
(ISO9060: 2018)
Class A (IEC 61724-
1:2021
Class 1 (WMO Guide
No.8)

Scientific qual-
ity and highest
accuracy

For example, compliance with IEC61724-1 Class A pyranometers with directional re-
sponse and temperature response test results is equivalent to ISO 9060 Spectrally Flat Class
A instruments. In some cases, older instruments from the ISO 9060:1990 standard’s [31]
highest quality “Secondary standard” (now Class A), may be updated, if a pyranometer lacks
the required test reports for the performance verification on temperature dependence and
directional response (e.g. [7]).

6.4.1.4 Recommendations for Power Measurements for real-time Wind and

Solar Forecasting

In summary, the following are recommended practices for use of power measurements in
real-time operation and forecasting of wind and solar power:

1. Live/real-time power measurements should be used in very short-term wind and solar
power forecasting, i.e. for lead-times from minutes to hours ahead.

2. Power data should be recorded at the same or higher temporal resolution and frequency
than that for the forecasting system.

• For electricity system operation temporal resolution may be one minute or less,
for trading operations this should match the duration of the shortest traded product
or settlement period.

• Forecast update frequency should match the highest frequency with which new
information becomes available, within the constraints of IT infrastructure.

3. The power measurement should be taken from the metering point that is most relevant
to the forecast user, this will usually be the metering system at the connection point to
the electricity network.

4. Live data on plant operating conditions (e.g. control actions the effect maximum out-
put) and availability (e.g. maintenance outages) should be used in forecast production
and evaluation.



82 Chapter 6. Best Practice Recommendations

• Where direct data is not available, this should be inferred using indirect measure-
ments.

5. Data on future plant availability (e.g. maintenance actions) should be used in forecast
production. Typically, power forecasts do not include the effect of control actions
issued by electricity system operators.

6. Live Power Available signals should be used in forecast production in place of live
power production data during periods when output is curtailed due to control actions

6.4.2 Accuracy and Resolution Recommendations

Table 6.4 and 6.5 show the accuracy and resolution recommendation for system operation
tasks on grid or utility-scale in the energy area. The limits are partially adapted from EPA’s
Guidance on Meteorological Monitoring for Regulatory Modeling Applications, section 4.5
Sampling Rates and from the Example Performance Specifications of 8.1 Instrumentation
Procurement [42], the WMO Guide No.8 “Guide to Instruments and Methods of Observation”
[66] and the heights from IEC 61400-12-1 [15] and system operators that have gained expe-
rience with these and other relevant guidelines and standards adopted from meteorological
monitoring for real-time applications.

It is also recommended for the instrumentation accuracy levels or limits to consider the
uncertainty of the instrumentation. Section 5.2 provides a number of useful measures how
to define and request instrumentation to comply or to provide such uncertainty quantification
from the calibration of instruments as part of the standing data.

Table 6.4: Recommendations for system accuracy and measurement resolution for real-time wind forecasting
applications in the power grid and utility-scale operation.

Wind Aggregated Generating Facility Meteorological Data Requirements

Measure-

ment

Units Precision Range Accuracy Height of instrument

Type Met Mast Alternative

Wind Speed Meters
/Second
(m/s)

0.1 m/s 0 to 50 ± 1m/s At Hub
Height +
lower blade
tip height
(±10% of ro-
tor diameter)

At 35m Me-
ters + Nacelle
or Lidar
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Wind Aggregated Generating Facility Meteorological Data Requirements

Measure-

ment

Units Precision Range Accuracy Height of instrument

Type Met Mast Alternative

Wind Direc-
tion

Degrees
from
True
North

1 degree 0 to 360 ± 5◦ At Hub
Height +
lower blade
tip height
(±10% of ro-
tor diameter)

At 35m

Barometric
Pressure

Hecto
Pascals
(HPa)

1 hPa 800 to
1000

± 1.0 hPa
at −20 to
50 ◦C, and
± 1.5 hPa
at below -
20◦ C

at or corerected to hub height

Ambient
Temperature

Degree
Celsius
(řC)

0.1ř C -50 to
+50

± 0.2◦C within 10m of hub height

Dewpoint Degrees
Celsius
(◦C)

0.1ř C -50 to
+50

± 0.2◦C within 10m of
hub height

At 2m or 10m

Relative
Humidity

Percentage
(%)

1.00% 0 to 100
%

± 2% at hub height

Ice-up
Parameter

Scale 0.0
to1.0

0.1 0 to 1 n/a within 10m of
hub height

At 35m

Precipitation (mm/min) 0.1 0 to11 2% up
to 0.417
mm/mon
3% over
0.417
mm/min

at 2m or 10m at 2m or 10m

Table 6.5 shows the accuracy recommendation that we recommend for system opera-
tion tasks in the energy area. The limits are partially adapted from EPA’s Guidance on

Meteorological Monitoring for Regulatory Modeling Applications, section 4.5 Sampling
Rates [42] and system operators that have gained experience with these and other relevant
recommendations from the WMO Guide No.8 [66].



84 Chapter 6. Best Practice Recommendations

Table 6.5: Recommendations of Accuracy and Resolution requirements for real-time forecasts of solar projects

Meteorological Data Requirements for Solar Projects

Measurement Units Precision Range Accuracy Height of in-

strument

Wind Speed Meters /Sec-
ond (m/s)

0.1 m/s 0 to 50 ± 1m/s Between 2-10
meters

Wind Direc-
tion

Degrees from
True North

1 degree 0 to 360 ± 5◦ Between 2-10
meters

Barometric
Pressure

Hecto Pascals
(HPa)

1 hPa 800 to
1000

± 1.0 hPa
at −20 to 50
◦C, and ± 1.5
hPa
below −20

◦C

Between 2-10
meters

Ambient
Temperature

Degree Cel-
sius (řC)

0.1
◦C -50 to

+50
± 0.2

◦C Between 2-10
meters

Dewpoint Degrees Cel-
sius (řC)

0.1ř C -50 to
+50

± 0.2◦C Between 2-10
meters

Relative
Humidity

Percentage
(%)

1.00% 0 to 100
%

± 2% Between 2-10
meters

Ice-up Pa-
rameter

Scale 0.0
to1.0

0.1 0 to 1 n/a Between 2-10
meters

Precipitation Millimetres
/minute
(mm/min)

0.1 0 to11 2% up
to 0.417
mm/mon 3%
over 0.417
mm/min

Between 2-10
meters

Backpanel
Temperature

Degree Cel-
sius (◦C)

0.1◦C -50 to
+50

± 0.1◦C
at −27 to
+50

◦C, and
± 0.2◦C at
below −27

◦C

Between 2-10
meters

Global Hori-
zontal
Irradiance

Watts/Square
Metre
(W/m2)

0.1 0 to 4000 ± 3% Between 2-10
meters

Diffused Hor-
izontal Irradi-
ance

Watts/Square
Metre
(W/m2)

0.1 0 to 4000 ± 3% Between 2-10
meters

Direct
Normal
Irradiance

Watts/Square
Metre
(W/m2)

0.1 0 to 2000 ± 3% Between 2-10
meters
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Measurement Units Precision Range Accuracy Height of in-

strument

Sunshine
Duration

V 0.1 0 to 1 90.00% Between 2-10
meters

6.4.3 Validation and Verification Recommendations

The quality of measured data that is supposed to be used in real-time applications is of
immense importance. Modern technologies to assimilate measured data into forecasting
models and processes usually have automatic algorithms that blacklist data that is out of
range or in other ways suspicious, because bad data is often worse for the forecast model and
processes than no data.
To avoid bad quality data to take precedence, quality control and clear assessment criteria
for the data are therefore important tools for the success of any application using real-time
measurements.

Section 5.4 details both the real-time data handling (section 5.6.1) and the post real-time
data quality assessment (section ??), necessary to keep a high quality data standard for the
real-time applications and to make sure that instrument failures are found, reported and fixed.

The following principle are recommended for the quality assurance and control of real-
time measurements for forecasting applications in power grid and utility-scale operations:

• High measurement data quality requires continuous maintenance

• In real-time environments, insufficient data quality cannot be compensated for

• Uncertainty in measurements need to be taken into account (??

• Quality assurance (QA) and quality control (QC) require a quality assurance project
plan (QAPP), which is the management and documentation of QC and QA procedures
and should include (see section 5.4):

(a) Project Description and organisation

(b) QA procedures and monitoring

(c) Design of QC procedures

6.4.3.1 Practical Methodology for historic quality control of measurement for

wind applications

A practical methodology to apply for the validation and quality control of meteorological
measurements is a combination of different consistency checks:

• Missing Values and time stamps

• Forecasted wind speed versus measured wind speed

• Forecasted temperature, wind direction against measured values
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• Forecasted power versus active power checked with SCADA MW

• Computed active power from measured wind speed versus actual active power

• Comparison against previous years of the same wind farm

• Comparison to the average error level for wind farms in the same period

6.4.3.2 Data Screening in Real-time Environment

The recommended data screening criteria for wind and solar projects as a practical approach
to data quality control and management follow the EPA guideline [42] and are suggested
with some limits that are easy to control. Table 6.6 provides some useful and practical limits
that can be recommended for the data screening task.

Table 6.6: Practical data screening criteria for data quality control of wind projects

Variable Screening Criteria: Flag data if the value

Wind Speed - is less than zero or greater than 50 m/s
- does not vary by more than 0.1 m/s for 3 consecutive hours
- does not vary by more than 0.5 m/s for 12 consecutive hours

Wind Direction - is less than zero or greater than 360 degrees
- does not vary by more than 1 degree for more than 3 consecutive hours
- does not vary by more than 10 degrees for 18 consecutive hours

Temperature - is greater than the local record high
- is less than the local record low (limit could be applied on a monthly basis)
- is greater than a 5◦C change from the previous hour
- does not vary by more than 0.5◦ for 12 consecutive hours

Temperature - is greater than 0.1◦C/m during the daytime
Difference - is less than -0.1◦CC/m during the night time

- is greater than 5.0◦C or less than -3.0◦C
Dew Point - is greater than the ambient temperature for the given time period
Temperature - is greater than a 5◦C change from the previous hour

- does not vary by more than 0.5◦C for 12 consecutive hours
- equals the ambient temperature for 12 consecutive hours

Pressure - is greater than 1060 mb (sea level)
- is less than 940 mb (sea level) (values should be adjusted for elevations other
than sea level)
- changes by more than 6 mb in three hours

Radiation - is greater than zero at night
- is greater than the maximum possible for the date and latitude
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6.5 Recommendations for real-time measurements for power plant

operation and monitoring

The key applications for wind plant operation, where real-time meteorological measurements
are required, are:

• Wind turbine control

Due to wake effects on nacelle anemometer, independent site data from a met mast or
LIDAR can assist the turbine controller to work more safe and efficient. Preview infor-
mation of the turbine inflow from a nacelle-based lidar system can be used to induce
blade pitch action and thus reduce loads and improve turbine power performance.

• Wind farm control

Wake measurements of scanning lidars or nacelle-based lidars that measure the wake
of turbines, can assist to redirect those wakes and thus reduce loads on downstream
turbines and increase their power production.

• Condition Monitoring

Knowledge about the wind conditions that affect a wind turbine or wind farm help to
estimate the load budget that the turbines have experience during their lifetime. This
information can be used for lifetime extension measures thus increasing the energy
yield of a wind farm and its profit.

Since measuring wind and other variables at power plant level is not always connected to
power forecasting applications, the following recommendations are basic recommendations
for high-quality measurements of these variables translated from the available standards.
More detailed information can be found in the IEC 61400-12-1 [15], the MEASNET recom-
mendations [41] for wind and the PVPS handbook [56].

It is important to recognise that the value of measured meteorological data at a wind
or solar plant has a relevance, not only for the plant operation and the monitoring of it’s
performance, but also to ensure that the generated electricity can be fed efficiently and
environmentally friendly into the power grid.
The principles of accuracy and reliability, as described in the key points to this section
and the definitions in section 6.1 and section 6.4 for the generation of reliable information
about the current weather situation, are all important corner stones for an efficient energy
transition. Measurement campaigns are expensive in resources and costly. The benefits of
measurements however can only be harvested, if the quality of the measured data is sufficient
to be used in modelling, forecasting and verification of performance.
It is for this reason that we recommend any wind farm control and monitoring design process
to be considered together and not separate from possible or potential benefits that can help
integrate the generated energy best possible into the power grid, by either designing the
instrumentation to also be used for grid integration, balancing and/or trading purposes and
in that way get higher benefits and lower overall costs.
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6.5.1 Quality Recommendations

6.5.1.1 Requirements for Wind Farms

Table 6.7 provides instrument classes for plant operation applications to ensure high-quality
measurements. For those applications, where there are two classes provided, the second,
lower class should be understood as minimum requirement and the higher class as a require-
ment, if high quality is required and the respective budgets justifiable.

The classes for wind projects are in detail defined in the IEC 61400 Part 12-1 [15] and
explained in Annex D of the standard. Any further detail to the quality of the instrumentation
should be referred to this standard.

Table 6.7: Forecast applications and respective recommended requirements for appropriate instrumentation.

Forecast Application Requirements for Wind

according to IEC 61400
Part 12-1 [15]

Requirements for Solar

according to ISO9060:
2018, EC 61724-1:2021
and WMO Guide No.8

Wind/Solar Park control Class A Class A
Park / Turbine
Monitoring

Class S Class B or C

Apart from classic met masts at hub height, the so-called iSpin technology, where sonic
anemometers are mounted at the tip of the turbine, are an alternative to consider. The
instrumentation is described in section 2.1.4. Using new technologies, such as the iSpin
technology may or may not lead to better results. It is therefore recommended that pilot
projects are carried out on e.g. one turbine or by analysing data from turbines that carry such
instrumentation. There are open source data and information available for this technology in
[63, 58].

6.5.1.2 Requirements for wind farms using lidars

The recommended technical requirements for lidars is to ensure high-quality data in long-term
real-time operation and as alternatives to met mast measurements are:

• measurements must be raw or technical requirements must include maintenance and
software updates

• lightning protection and recovery strategy after lightning measurements should be
taken at a height appropriate for the wind farm, either at one of preferable at both hub
height and around 30m

• instruments must be serviced and maintained by skilled staff

• version control must be maintained for signal processing

• wind characteristics data must be on wind turbine level
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• Lidars and Sodars in complex terrain require special consideration

6.5.1.3 Requirements for Solar Plants

The recommended technical requirements for pyranometer for solar plant performance mon-
itoring are provided in table 6.8.

Table 6.8: Pyranometer classes for various requirements.

Requirements Instrument class Instrument de-

scription

Measurements for high-
level monitoring for large
commercial scale PV sys-
tems

Class B (ISO9060:2018)
Class B (IEC 61724-
1:2021)
Class 2-3 (WMO Guide
No.8)

Good quality

Economic solutions for
routine measurements and
small PV systems

Class C (ISO9060: 2018)
Class C (IEC 61724-
1:2021
Class 4-5 (WMO Guide
No.8)

Medium quality

6.5.2 Validation and Verification

In the generally recommended validation of instrumentation as defined in the "ISO Guide to
the Expression of Uncertainty in Measurements" [20, 6, 61] and its 2 supplements [[59, 60]
from the Joint Committee for Guides in Meteorology (JCGM) two types of measurement
uncertainty need to be accounted for in any standardised taken measurement:

1. systematic errors, which are also known as measurement bias, often associated with
offsets of the measured quantity

2. random errors, which are associated with the fact that 2 measurements of the same
quantity are seldom the same

In most cases the validation and verification of instruments and the respective data should
be designed for both long-term analysis of e.gȧ year and shorter periods such as daily, weekly,
monthly or quarterly examination of observational data signals. There are a few important
targets for the validation and quality control:

1. To identify the amount of valid data submitted



90 Chapter 6. Best Practice Recommendations

2. To produce a comprehensive analysis which will provide the wind farm owner with a
description of the root of the detected error(s) in the signals.

3. To limit the time from when an issue with data signals starts until it is diagnosed and
solved

4. To avoid cross correlations between measurement from different sources to fill data
gaps

The last item may be cancelled from the list above, if there exists a short distance of the
generating unit’s locations to another generating unit.

A practical methodology to apply for the validation and quality control of meteorological
measurements is a combination of different consistency checks:

• Missing Values and time stamps

• Forecasted wind speed versus measured wind speed

• Forecasted temperature, wind direction against measured values

• Forecasted power versus active power checked with SCADA MW

• Computed active power from measured wind speed versus actual active power

• Comparison against previous years of the same wind farm

• Comparison to the average error level for wind farms in the same period

6.5.2.1 Statistical tests and metrics for the QC process

A practical and recommended solution for plant monitoring is to use verification methods
to test measurement signal quality similar to the verification of forecast errors, with the
exception that a forecast or a forecast range of the respective variable is used as the reference,
because it is the measurement that needs validation. The forecast has a known accuracy level,
which is used to find changes in quality in the measurement signals. By using e.g. ensemble
forecasts, the uncertainty of the measurement signals can also be quantified (see e.g. [43]).

By validating in different sub periods of the year, it can be shown whether the error
pattern has been temporary or on a long-term basis.

By using a variation of different statistical tests as recommended in part 3 of this rec-
ommended practice [2], the data basis is large enough to interpret the data accuracy. The
following set of statistical metrics are recommended (details can be found in section 5.5.1.3:

1. BIAS: The BIAS alone does not provide a guarantee or correctness.

2. MAE: MAE and BIAS together show, if the data has an offset.

3. RMSE: There are few extreme errors, if the ratio RMSE/MAE exceeds 1.3.

4. CORRELATION: The correlation allows for easy detection of constant measurements
as well as sign errors.
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5. Frequency distribution: The frequency distribution from e.gȧ one year data set of 15-
min mean values of a wind speed should be a smooth curve with decreasing probability
of high wind speeds. A temporary instrument fault will be visible as a skewness of the
curve. Comparing the frequency distributions of an ensemble mean forecast against
measurements is recommended in this case, as a mean smooths outliers in the data set.

Positive and negative phase errors between a forecast and measured data tend to cancel
each other out over a long enough period. Therefore, a high similarity between two
independent time series of the same physical variable can be expected.

The formulas of the test metrics can be found in the Appendix B.
A graphical analysis of measurement signals with these metrics can then also be used to define
acceptance limits for the meteorological variables or to see long-term trends. Examples of
such graphical analysis can be found in section 5.5.1.3.

6.5.2.2 Solar specific Validation

Specific validation for solar projects can be found in the PVPS handbook [56] in chapter
9.5 Solar Resource Data for Plant Operations. In this section, a variety of approaches for
monitoring and measuring the performance of an existing solar power plant are described.
Here the handbook says that “..the system is directly linked to the meteorological conditions.
For flat-plate thermal collectors and PV, the production is roughly proportional to the incident
GTI; for concentrating technologies, the incident DNI is the driving input. In all cases,
additional meteorological variables need to be monitored because they play a modulating
role.”

The handbook concludes that real-time monitoring of the meteorological conditions at
the systems location are important for the following applications:

(a) Evaluate a performance guarantee (acceptance testing)

(b) Assess the power plants performance to improve yield predictions and to gain knowl-
edge toward improvements in future plants

(c) Identify conditions of poor performance, including evidence of soiling, shading, hard-
ware malfunction, or degradation, which could lead to warranty replacement, etc.

6.5.2.3 Performance Control for hardware and manufacturer production guar-

antees

Performance control of wind and solar plants and turbine/panels are important for financial
aspects of a project, but also for the predictability of these energy sources, whether this is
for system integration, balancing or power trading. In this way, the power performance is
directly connected to the efficient usage of the generated power.
And, as described in the previous section, it is a direct recommendation to connect quality con-
trol to performance monitoring by designing instrumentation setup and control mechanisms
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for the performance control to a high standard of data quality as defined and recommended
for power grid applications in section 6.4.

The following recommendations are minimum requirements and recommendations, if
the data is only used for performance control.

1. Wind Power Performance Control:

Performance control of wind farms and wind turbines is best conducted in 3-4 steps:

(a) Measuring basic meteorological parameters that can be used to compute a

power generation output:

• Wind speed and direction

• air temperature

• barometric pressure

• relative humidity

It is recommended to measure these parameters such that they represent the
weather conditions at the wind turbine rotor centre. At least 2 measurement
heights per wind farm with the following measuring heights ate recommended:

(a) hub height or within 10m of hub height

(b) at approx. 30-35m above ground (typically first model level of NWP models)

(c) at 10m above ground (standard meteorological measuring height)

If (a) is not possible, a lower height can be measured and corrected for according
to ISO 2355 (see chap. 6 [15]).

(b) Conversion of the meteorological parameters into a power output:

The best and recommended way is to follow the IEC 61400-12-1 standard on
power performance measurments and apply a physical formula (equ. 2, chapter
8 [15]).

(c) Comparison power output with measured and forecasted input variables:

Additionally, it is recommended to use forecasts from an independent forecasting
model that uses power generation output over ideally 1 year, but a minimum of
3 months of various wind conditions and compare these results with the derived
measured power output. The improvement from measured parameters should be
approximately 3-5% when measured over a minimum of 3 months (see e.g. [43,
47].

(d) Visual Inspection with Ensemble generated Percentiles:

By using a physical ensemble forecasting system of type b.1 (physical NWP
parameterization schemes) [17] or of type “Physical Methods” (sec. 4.2.1.
in[8])“Multi-Scheme Ensemble” (section 3.2.1.4 and Table 3.1 in [44]), for ex-
ample, 10 percentiles can be computed and compared with the computed and
measured power output. Changes in performance can in that way easily be seen
by visual inspection. This is a straight forward methodology to avoid surprises
and be able to prove, with a physical methodology, hardware malfunctioning.
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2. Solar Power Performance control1

If monitoring of a PV plant’s output comprises continuous comparisons to the expected
output based on actual meteorological conditions leads to 2 main benefits:

• PV arrays can be cleaned as a function of meteorological conditions

• Errors and malfunctions of equipment can be detected more quickly

The essential parameters for CST (concentrating solar technologies) plants are [56]:

(a) Real-time DNI

(b) Wind

(c) Temperature

The best choice and recommendations for instrumentation are[56]:

• Maintenance issues: a well-maintained reference cell in the POA 2

• Performance assessment: well-maintained, and regularly cleaned POA pyra-
nometer

Visual Inspection with Ensemble generated Percentiles:

By using a physical ensemble forecasting system of type b.1 (physical NWP pa-
rameterization schemes) [17] or of type “Physical Methods” (sec. 4.2.1. in[8]) or
“Multi-Scheme Ensemble” (section 3.2.1.4 and Table 3.1 in [44]), for example, 10
percentiles can be computed and compared with the computed and measured power
output. Changes in performance can in that way easily be seen by visual inspection.
This is a straight forward methodology to avoid surprises and be able to prove, with a
physical methodology, hardware malfunctioning.

6.6 Recommendations for real-time measurements for power trad-

ing in electricity markets

Recommendations for real-time measurements for power trading and balancing in electricity
markets are very much dependent on the type of trading that is performed. For day-ahead
trading, historic measurements are sufficient, and hence also a cleaning strategy to clean out
bad data similar to resource assessments, described in the IEC [14, 15] and covered in section
6.4.1.
The following recommendations therefore refer to intra-day trading or teading in rolling
markets, where real-time measurements are of immense importance.
To define the need and background for the measurement data quality, the first step is to
understand the possibilities trading strategies with the use of real-time measurements provide.

1see details in the PVPS Handbook chapter 9.5.2 [56]
2Plane of array, referring to global tiltet irradiance (GTI) measurements.
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6.6.1 Trading Strategies with real-time Measurements

In [44] it is reported that “..frequent short-term forecasts based on online data add value
not only because they are more accurate than the day-ahead horizon.”, but also because it
enables the trader to trade intelligently within the physical uncertainties of both forecasts and
measurements (see also section 5.2).
Nevertheless, trading on intra-day or rolling markets with short-term forecasts that have been
adapted with real-time measurements should take place with care, because they also increase
the trading volume and thereby the loss compared to the spot market price. This situation
can occur, if the short-term forecast errors have opposite sign of the day-ahead error, which
statistically occurs for up to 50% likelihood, if the error of the day-ahead is small[44].

In most power exchanges there still exists a significant loss on wind and solar power
traidng on the intra-day or rolling markets. This loss is often associated with the higher
expenses when buying short-term power for balancing purposes. Selling surplus wind or
solar power generated by a BIAS-free day-ahead forecast is still more beneficial.
However, investigations of this pattern have shown that an efficient trading system should
neither deal with imbalances that are traded multiple times, nor that one and the same
megawatt (MW) is charged several times with reserve costs [46, 45, 44]. This can be
accomplished by using an approach that uses uncertainty factors, illustrated in Figure 6.1,
and that limits the trading of imbalances according to the expected volumes that lie outside a
pre-calculated and with short-term forecasts updated uncertainty bands around a day-ahead
forecast as demonstrated in [46] and explained in more detail in section 3.8.2 The Balancing

Challenges on the Intra-day Horizon [44].

6.6.2 Quality Recommendations

The quality recommendations follow to a large extent the recommendations for power grid
in section 6.4 as the ideal solution, and the instrument classes described in section 4.1 and
defined in Table 6.9 for electricity market purposes.

Table 6.9: Forecast applications and respective recommended requirements for appropriate instrumentation.

Forecast Application Requirements for Wind

according to IEC 61400
Part 12-1 [15]

Requirements for Solar

according to ISO9060:
2018, EC 61724-1:2021
and WMO Guide No.8

Electricity Market
Trading

Class B Class B

Table 6.10 provide the recommended instrument classes for solar projects.



6.6. Recommendations for real-time measurements for power trading in electricity markets 95

Figure 6.1: Trading principle when the uncertainty band is used for the determination of the volume that is to
be traded in an intra-day or rolling market. The dashed grey line is the short-term forecast (SFC), the black line
is the day ahead forecast (DFC) and the grey lines are the uncertainty forecast with the upper and lower limit
©Möhrlen et al. [44].

6.6.3 Accuracy and Resolution requirements

It is important to recognise that the value of measured meteorological data at wind or solar
plants has a relevance, not only for trading the produced energy from wind and solar plants.
It is equally important to also ensure that the generated electricity can be fed efficiently
and environmentally friendly into the power grid and that imbalances are avoided, where
possible, and not become subject to speculations for pure financial purposes.
The principles of accuracy and reliability, as described in the key points to this section
and the definitions in section 6.1 and section 6.4 for the generation of reliable information
about the current weather situation, are all important corner stones for an efficient energy
transition. Measurement campaigns are expensive in resources and costly. The benefits of
measurements however can only be harvested, if the quality of the measured data is sufficient
to be used in modelling, forecasting and validation of generation performance.
It is for this reason that we recommend also for trading applications that, if this is possible,
the design process for real-time measurement setup is not separate from possible or potential
coordination with plant operations, monitoring and grid integration requirements. Only,
if measurement strategies are aligned, it is possible that all 4 tiers can benefit from the
measurements and share the costs. When making use of these synergies, the integration of
the generated energy into the power grid will be cheaper and more efficient overall.
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Table 6.10: Pyranometer classes for various requirements.

Requirements Instrument class Instrument de-

scription

Measurements for high-
level monitoring for large
commercial scale PV sys-
tems

Class B (ISO9060:2018)
Class B (IEC 61724-
1:2021)
Class 2-3 (WMO Guide
No.8)

Good quality

Economic solutions for
routine measurements and
small PV systems

Class C (ISO9060: 2018)
Class C (IEC 61724-
1:2021
Class 4-5 (WMO Guide
No.8)

Medium quality
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Appendix A

Examples of System Operator Met Mea-

surement Requirements

A.1 Comparison of Requirements in various jurisdictions

• AESO: Alberta Electric System Operator in Calgary, Alberta, Canada [AESO,2011]

• CAISO: California Independent System Operator [CAISO, 2014, 2016]

• BPA: Bonneville Power Administration in Portland, Oregon, USA [BPA, 2015]

• ERCOT: Electricity Council of Texas in Austin, Texas, USA [ERCOT, 2012]

• NYISO: New York Independent System Operator in Rensselaer,NY,USA [NYISO,
2016]

• PJM: Independent System Operator in Audubon, PA, USA [PJM, 2016]

• HECO: Hawaiian Electric Company, Maoui, Hawaii [HECO, 2016]

• LitGrid: in Vilnius, Lithuania [LiTGRID, 2010]

A.2 Met Measurement Example from Califorina Independent

System Operator in USA

The following tables are examples from the California Independent System Operator taken
from the Appendix Q of their Eligible Intermittent Resources Protocol (EIRP) from December
2020.

113



114 Appendix A. Examples of System Operator Met Measurement Requirements

Figure A.1: Wind Eligible Intermittent Resources Telemetry Data Points

Figure A.2: Solar Eligible Intermittent Resources Telemetry Data Points

A.3 Met Measurement Example from Irish System Operator

EIRGRID Group

Examples from the Met Data Requirement document of the Irish transmission system oper-
ator EIRGRID, which is part of the grid code for wind generation units under section WFPS
1.7.1.6:

Time Delays and Data Quality

Digital signal changes from the Controllable WFPS shall be relayed to the TSO Telecommu-
nication Interface Cabinet within 1 second of the associated change of state event. Analogue
signal changes shall be relayed within 5 seconds and with an error of 0.5% or less, with the
exception of the Meteorological Data required as per PPM 1.7.1.2.1, which shall be updated
within 5 seconds and with an error of 2.5% or less.

System accuracies and Measurement resolution

The meteorological data signals provided shall be as detailed in Table 1: Meteorological
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data signal accuracy and resolution and Table 2: Meteorological data variable and their error
threshold limit. The WFPS shall provide an updated signal every 1 minute.

Figure A.3: Meteorological data signal accuracy and resolution

Figure A.4: Meteorological data variable and their error threshold limit for statistical tests

A.4 Met Measurement Example from Alberta Electric System

Operator in Canada

Requirements for Solar Grid Connected Plant Meteorological Data at the Alberta Electric
System Operator in Canada.

Reference: https://www.aeso.ca/rules-standards-and-tariff/iso-rules/
section-304-9-wind-and-solar-aggregated-generating-facility-forecasting/

Section 304.9 - Wind and Solar Aggregated Generating Facility Forecasting
ISO Rules Part 300 on System Reliability and Operations Division 304 Routine Opera-

tions Section 304.9 Wind and Solar Aggregated Generating Facility Forecasting
The rule states on the Applicability that “..Section 304.9 applies to: (a)the legal ownerof

a wind or solar aggregated generating facility connected to the interconnected electric system
or an electric system within the service area of the City of Medicine Hat, including a wind
or solar aggregated generating facility situated within an industrial complex that is directly
connected to the interconnected electric systemor to an electric system within the service
area of the City of Medicine Hatand that has a gross real power capability equal to or greater
than 5 MW; and (b)the ISO.”

In section of the rule 304.9 the following requirements apply:
(4) The legal ownerof a wind aggregated generating facility must, inresponse to a request

by the ISO under subsection 8(3),providethe following facility data:

(a) meteorologicaltower data collection heightin meters (m), with a precision for instan-
taneousmeasurements to the nearest 1m;

https://www.aeso.ca/rules-standards-and-tariff/iso-rules/section-304-9-wind-and-solar-aggregated-generating-facility-forecasting/
https://www.aeso.ca/rules-standards-and-tariff/iso-rules/section-304-9-wind-and-solar-aggregated-generating-facility-forecasting/


116 Appendix A. Examples of System Operator Met Measurement Requirements

(b) turbinemodelname

(c) turbinemodel capacity in megawatts (MW), with a precision to the nearest 0.1MW

(d) turbinewind speed cut-in in meters per second (m/s), with a precision to the nearest
0.1 m/s

(e) turbinewindspeedcut-outin meters per second (m/s), with a precision to the nearest 0.1
m/s

(f) turbine temperaturecut-out lowerin degrees Celsius (C), with a precision for instanta-
neousmeasurements to the nearest 1Cand an indicator is required to confirm that the
numbers are ambient temperature within the rotor or air temperature

(g) turbinetemperaturecut-out upper in degrees Celsius (C), with a precision for instanta-
neousmeasurements to the nearest 1Candan indicator is required to confirm that the
numbers are ambient temperature within the rotor or air temperature

(h) site latitude and longitude in degrees; and(i)turbine power curves.

Equivalently, the technical rule states that “..the legal owner of a solaraggregated gen-
erating facilitymustin response to a request by the ISO under subsection 8(3), provide the
following solar arraydata and records, including:

(a) site latitude and longitude in degrees

(b) direct current (DC)real power rating

(c) alternating current (AC) real power rating

(d) inverter manufacturer and model

(e) mounting height from ground in meters(m)

(f) tilt angle or range of tilt angles to horizontal plane in degrees

(g) azimuth angle in degrees;(h)alternating current (AC) real power capacity per solar
array in megawatts (MW)

(h) mounting type, tracking (fixed, single or dual axis)

(i) module type (crystalline, thin-film etc.).
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Table A.1: Alberta Electric System Operators’s Wind Aggregated Generating Facility Meteorological Data
Requirements Technical Rule 304.9

Wind Aggregated Generating Facility Meteorological Data Requirements

Measurement Units Precision Range Accuracy Height of instrument
Type Set-1 Set-2

Wind Speed Meters /Sec-
ond (m/s)

0.1 m/s 0 to 50 ± 1m/s At Hub
Height

At 35m
Meters

Wind Direction Degrees from
True North

1 degree 0 to 360 ± 5◦ At Hub
Height

At 35m
Meters

Barometric
Pressure

Hecto Pascals
(HPa)

1 hPa 800 to
1000

± 1.0
hPa
at −20 to
50 ◦C,
and ±

1.5 hPa
at below
-20◦ C

At Conve-
nient loca-
tion

At Conve-
nient loca-
tion

Ambient Temper-
ature

Degree Cel-
sius (řC)

0.1ř C -50 to
+50

± 0.2◦C At Hub
Height

At 35m
Meters

Dewpoint Degrees Cel-
sius (◦C)

0.1ř C -50 to
+50

± 0.2◦C At Conve-
nient loca-
tion

At Conve-
nient loca-
tion

Relative
Humidity

Percentage
(%)

1.00% 0 to 100
%

± 2% At Conve-
nient loca-
tion

At Conve-
nient loca-
tion

Ice-up Parameter Scale 0.0
to1.0

0.1 0 to 1 n/a At Conve-
nient loca-
tion

At Conve-
nient loca-
tion

Precipitation Millimetres
/minute
(mm/min)

0.1 0 to11 2% up
to 0.417
mm/mon
3% over
0.417
mm/min

At Conve-
nient loca-
tion

At Conve-
nient loca-
tion

Table A.2: Alberta Electric System Operators’s Solar Aggregated Generating Facility Meteorological Data
Requirements Technical Rule 304.9

Solar Aggragated Generating Facility Meteorological Data Requirements

Measurement Units Precision Range Accuracy Height of instrument
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Type Set-1 Set-1

Wind Speed Meters /Sec-
ond (m/s)

0.1 m/s 0 to 50 ± 1m/s Between 2-10
meters

Between 2-10
meters

Wind Direc-
tion

Degrees from
True North

1 degree 0 to 360 ± 5◦ Between 2-10
meters

Between 2-10
meters

Barometric
Pressure

Hecto Pascals
(HPa)

1 hPa 800 to
1000

± 1.0 hPa
at −20 to 50
◦C, and ± 1.5
hPa
below −20

◦C

Between 2-10
meters

Between 2-10
meters

Ambient
Temperature

Degree Cel-
sius (řC)

0.1
◦C -50 to

+50
± 0.2

◦C ă Between 2-10
meters

Between 2-10
meters

Dewpoint Degrees Cel-
sius (řC)

0.1ř C -50 to
+50

± 0.2◦C Between 2-10
meters

Between 2-10
meters

Relative
Humidity

Percentage
(%)

1.00% 0 to 100
%

± 2% Between 2-10
meters

Between 2-10
meters

Ice-up Pa-
rameter

Scale 0.0
to1.0

0.1 0 to 1 n/a Between 2-10
meters

Between 2-10
meters

Precipitation Millimetres
/minute
(mm/min)

0.1 0 to11 2% up
to 0.417
mm/mon 3%
over 0.417
mm/min

Between 2-10
meters

Between 2-10
meters

Backpanel
Temperature

Degree Cel-
sius (◦C)

0.1◦C -50 to
+50

± 0.1◦C
at −27 to
+50

◦C, and
± 0.2◦C at
below −27

◦C

Between 2-10
meters

Between 2-10
meters

Global Hori-
zontal
Irradiance

Watts/Square
Metre
(W/m2)

0.1 0 to 4000 ± 3% Between 2-10
meters

Between 2-10
meters

Diffused Hor-
izontal Irradi-
ance

Watts/Square
Metre
(W/m2)

0.1 0 to 4000 ± 3% Between 2-10
meters

Between 2-10
meters

Direct
Normal
Irradiance

Watts/Square
Metre
(W/m2)

0.1 0 to 2000 ± 3% Between 2-10
meters

Between 2-10
meters

Sunshine
Duration

V 0.1 0 to 1 90.00% Between 2-10
meters

Between 2-10
meters
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